
Great Theoretical Ideas In Computer Science

Anupam
Gupta

CS 15-251 Fall
2006

Lecture
17

Oct 24, 2006 Carnegie Mellon
University

Randomness and Computation:
Some Prime Examples

Checking Our Work

Suppose we want to check p(x) q(x) = r(x),
where p, q and r are three polynomials.
 (x-1)(x3+x2+x+1) = x4-1

If the polynomials are long, this requires
n2 mults by elementary school algorithms
-- or can do faster with fancy techniques like the Fast
Fourier transform.

Can we check if p(x) q(x) = r(x) more
efficiently?

Great Idea:
Evaluating on Random Inputs

Let f(x) = p(x) q(x) – r(x). Is f zero?

Idea: Evaluate f on a random input z.

If we get f(z) = 0, this is evidence that f
is zero everywhere.

If f(x) is a degree 2n polynomial, it can
only have 2n roots. We’re unlikely to
guess one of these by chance!

Equality checking by random
evaluation

1. Fix a sample space S={z1, z2,…, zm}
 with arbitrary points zi, for m=2n/d .

2. Select random z from S with probability 1/m.

3. Evaluate f(z) = p(z) q(z) – r(z)

4. If f(z) = 0, output “equal”
 otherwise output “not equal”

Equality checking by random
evaluation

What is the probability the algorithm
outputs “not equal” when in fact f = 0?

Zero!

If p(x)q(x) = r(x) , always correct!

Equality checking by random
evaluation

What is the probability the algorithm
outputs “equal” when in fact f  0?

Let A = {z | z is a root of f}.

Recall that |A|  degree of f ≤ 2n.

Therefore: P(A)  2n/m = d.

We can choose d to be small.

Equality checking by random
evaluation

By repeating this procedure k times,
we are “fooled” by the event

 f(z1) = f(z2) = … = f(zk) = 0
 when actually f(x)  0

with probability no bigger than

 P(A)  (2n/m)k = d k

Wow! That idea could be
used for testing equality
of lots of different types

of “functions”!

Yes! E.g., a matrix is just a
special kind of function.

Suppose we do a matrix
multiplication of two nxn

matrices:

AB = C

The idea of random evaluation
can be used to efficiently check

the calculation.

What does “evaluate” mean?

Just evaluate the “function” C on a random bit vector r
by taking the matrix-vector product C × r

1 0 3 -4 8

7 0 0 2 9

13 5 -6 0 -7

1 6 21 9 0

1

0

1

1

0

=

0

9

7

31

So to test if AB = C we compute

x = Br, y = Ax (= Abr), and z = Cr

If y = z, we take this as evidence that
the calculation was correct.

The amount of work is only O(n2).

Claim: If AB  C and r is a random n-

bit vector, then Pr(ABr = Cr)  ½.

Claim: If AB  C and r is a random n-bit vector, then Pr(ABr = Cr)  ½.

So, if a complicated, fancy
algorithm is used to
compute AB in time
O(n2.236), it can be

efficiently checked with
only O(n2) extra work,

using randomness!

“Random Fingerprinting”

Find a small random “fingerprint” of a large object.

 - the value f(z) of a polynomial at a point z

 - the value Cr at a random bit vector r

This fingerprint captures the essential information
about the larger object: if two large objects are
different, their fingerprints usually are different!

Earth has huge file X that she
transferred to Moon. Moon gets Y.

Earth: X Moon: Y

Did you get that file ok? Was the
transmission accurate?

Uh, yeah.

Gauss

Let p(n) be the
number of primes
between 1 and n.

I wonder how fast
p(n) grows?

Conjecture
[1790s]:

()
lim 1

/ lnn

n

n n

p

→
=

Legendre

Their estimates

x pi(x) Gauss' Li Legendre x/(log x - 1)

1000 168 178 172 169

10000 1229 1246 1231 1218

100000 9592 9630 9588 9512

1000000 78498 78628 78534 78030

10000000 664579 664918 665138 661459

100000000 5761455 5762209 5769341 5740304

1000000000 50847534 50849235 50917519 50701542

10000000000 455052511 455055614 455743004 454011971

J-S Hadamard

Two independent
proofs of the
Prime Density

Theorem [1896]:

()
lim 1

/ lnn

n

n n

p

→
=

De la Vallée Poussin

The Prime Density Theorem

This theorem remains one of the
celebrated achievements of number

theory.

In fact, an even sharper conjecture
remains one of the great open problems

of mathematics!

Riemann

The Riemann
Hypothesis [1859]

() / ln
lim 0
n

n n n

n

p
→

−
=

Slightly easier to show

 p(n)/n ≥ 1/(2 logn).

Random logn bit number is a
random number from 1..n

p(n) / n ≥ 1/2logn

means that a random
logn-bit number has

at least a 1/2logn chance
of being prime.

Random k bit number is a
random number from 1..2k

p(2k) / 2k ≥ 1/2k

means that a random
k-bit number has

at least a 1/2k chance
of being prime.

Really useful fact

A random k-bit number has at least
a 1/2k chance of being prime.

So if we pick 2k random k-bit numbers

the expected number of primes on the
list is at least 1

Picking A Random Prime

Many modern cryptosystems (e.g., RSA)
include the instructions:

“Pick a random n-bit prime.”

How can this be done efficiently?

Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:

1) Generate random n-bit numbers

2) Test each one for primality

Picking A Random Prime

“Pick a random n-bit prime.”

1)Generate kn random n-bit numbers

 Each trial has a ≥ 1/2n chance of being prime.

 Pr[all kn trials yield composites]

≤ (1-1/2n)kn = (1-1/2n)2n * k/2 ≤ 1/ek/2

Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:

1) Generate random n-bit numbers

2) Test each one for primality

For 1000-bit primes, if we try out 10000 random
1000-bit numbers, chance of failing ≤ e-5

Moral of the story

Picking a random prime is
“almost as easy as”

picking a random number.

(Provided we can check for primality.
More on this later.)

Earth has huge file X that she
transferred to Moon. Moon gets Y.

Earth: X Moon: Y

Did you get that file ok? Was the
transmission accurate?

Uh, yeah.

Are X and Y the same n-bit numbers?

p = random 2logn-bit prime
Send (p, X mod p)

Answer to “X  Y mod p ?”

Earth: X Moon: Y

Why is this any good?

Easy case:

 If X = Y, then X  Y (mod p)

Why is this any good?

Harder case:

 What if X ≠ Y? We mess up if p | (X-Y).

 Define Z = (X-Y). To mess up, p must divide Z.

 Z is an n-bit number.

  Z is at most 2n.

 But each prime ≥ 2.

 Hence Z has at most n prime divisors.

Almost there…

Z has at most n prime divisors.

How many 2logn-bit primes?

 at least 22logn/(2*2logn) = n2/(4logn) >> 2n primes.

Only (at most) half of them divide Z.

A random k-bit number has at least a
1/2k chance of being prime.

Theorem: Let X and Y be distinct
n-bit numbers. Let p be a random

2logn-bit prime.

Then
Prob [X = Y mod p] < 1/2

Earth-Moon protocol makes mistake
with probability at most 1/2!

Are X and Y the same n-bit numbers?

EARTH: X MOON: Y

Pick k random
2logn-bit primes: P1, P2, .., Pk

Send (X mod Pi) for 1 ≤ i ≤ k

k answers to “X = Y mod Pi ?”

Exponentially smaller error probability

If X=Y, always accept.

If X  Y,

 Prob [X = Y mod Pi for all i] ≤ (1/2)k

Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:

1) Generate random n-bit numbers

2) Test each one for primality

How can we test primality efficiently?

Primality Testing:
Trial Division On Input n

Trial division up to n

 for k = 2 to n do
 if k |n then
 return “n is not prime”
 otherwise return “n is prime”

about n divisions

Trial division performs n divisions
on input n.

Is that efficient?

For a 1000-bit number, this will take
about 2500 operations.

That’s not very efficient at all!!!

Do the primes
have a fast

decision
algorithm?

Euclid gave us a fast
GCD algorithm.

Surely, he tried to give
a faster primality test

than trial division.

But Euclid, Euler, and
Gauss all failed!

But so many cryptosystems,
like RSA and PGP, use fast
primality testing as part of
their subroutine to generate
a random n-bit prime!

What is the fast primality
testing algorithm that they
use?

There are fast randomized
algorithms to do primality

testing.

Strangely, by allowing our
computational model an extra
instruction for flipping a fair
coin, we seem to be able to

compute some things faster!

If n is composite, what would be
a certificate of compositeness
for n?

A non-trivial factor of n.

But… even using randomness, no
one knows how to find a factor

quickly.

We will use a different
certificate of compositeness

that does not require factoring.

Recall that:

Fermat: ap-1 = 1 mod p.

When working modulo prime p,
for any a  0, a(p-1)/2 = §1.

X2 = 1 mod p has at most 2 roots.

1 and -1 are roots, so it has no
others.

“Euler Certificate” Of Compositeness

When working modulo a prime p,
for any a  0, a(p-1)/2 = §1.

We say that a is a certificate of
compositeness for n,

if a  0 and a(n-1)/2  §1.

Clearly, if we find a certificate of
compositeness for n, we know that n

is composite.

“Euler Certificates” Of
Compositeness

ECn = { a 2 Z*
n | a

(n-1)/2  §1 }

NOT-ECn = { a 2 Z*
n | a

(n-1)/2 = §1 }

If NOT-ECn  Z*
n then

ECn is at least half of Z*
n

In other words,
if ECn is not empty, then

ECn contains at least half of Zn
*.

“Euler Certificates” Of
Compositeness

ECn = { a 2 Z*
n | a

(n-1)/2  §1 }

NOT-ECn = { a 2 Z*
n | a

(n-1)/2 = §1 }

If NOT-ECn  Z*
n then

ECn is at least half of Z*
n

In other words,
if ECn is not empty, then

ECn contains at least half of Zn
*.

Randomized Primality Test

Let’s suppose that ECn contains at least half the elements of Z*n.

Randomized Test:

 For i = 1 to k:

 Pick random ai 2 [2 .. n-1];

 If GCD(ai, n)  1, Halt with “Composite”;

 If ai
(n-1)/2 ≠ §1 , Halt with “Composite”;

 Halt with “I think n is prime. I am only wrong (½)k fraction
 of times I think that n is prime.”

Is ECn non-empty for all primes n?

Certain numbers masquerade as primes.

A Carmichael number is a number n such that
an-1 = 1 (mod n) for all numbers a with gcd(a,n)=1.

Example: n = 561 =3*11*17 (the smallest Carmichael number)
 1105 = 5*13*17
 1729 = 7*13*19

And there are many of them. For sufficiently large m, there
are at least m2/7 Carmichael numbers between 1 and m.

Unfortunately, no.

The saving grace

The randomized test fails only for Carmichael
numbers.

But, there is an efficient way to test for
Carmichael numbers.

Which gives an efficient algorithm for
primality.

Randomized Primality Test

Let’s suppose that ECn contains at least half the elements of Z*n.

Randomized Test:

 For i = 1 to k:

 Pick random ai 2 [2 .. n-1];

 If GCD(ai, n)  1, Halt with “Composite”;

 If ai
(n-1)/2 ≠ §1 , Halt with “Composite”;

 If n is Carmichael, Halt with “Composite”

 Halt with “I think n is prime. I am only wrong (½)k fraction
 of times I think that n is prime.”

Randomized Algorithms

The test we outlined made one-sided error:
 It never makes an error when it thinks n is composite.
 It could just be unlucky when it thinks n is prime.

Another one-sided algorithm that never makes a
mistake when it thinks n is prime.

Yet another algorithm makes 2-sided error.
Sometimes it is mistaken when it thinks n is prime,
sometimes it is mistaken when it thinks n is
composite.

n prime means half of a’s satisfy

 a(n-1)/2 = -1 mod n

If n is prime, then Zn
* has a generator g.

Then g(n-1)/2 = -1 mod n.

A random a2 Zn
* is given by gr for

uniformly distributed r.

Half the time, r is odd:

(gr)(n-1)/2 = -1 mod n

Another Randomized Primality Test

Suppose n is not even, nor is it the power of a number.

Randomized Test:

 For i = 1 to k:

 Pick random ai 2 [2 .. n-1];

 If GCD(ai, n)  1, Halt with “Composite”;

 If ai
(n-1)/2 ≠ §1 , Halt with “Composite”;

 If all k values of ai
(n-1)/2 = +1, Halt with “I think n is composite.

 I am only wrong (½)k fraction of the times.”

 Halt with “I think n is prime. I am only wrong (½)k fraction
 of times I think that n is prime.”

We can prove that if n is an odd
composite, not a power, and there is

some a such that a(n-1)/2 = -1,
then ECn  ;.

Hence, ECn is at least a
half fraction of Z*

n.

This algorithm makes 2-sided error.
Sometimes it is mistaken when it thinks n is prime,

sometimes it is mistaken when it thinks n is composite.

Many Randomized Tests

Miller-Rabin test Solovay-Strassen test

In 2002, Agrawal, Saxena, and Kayal
(AKS) gave a deterministic primality

test that runs in time O((logn)12).

This was the first deterministic
polynomial-time algorithm that didn’t
depend on some unproven conjecture,

like the Riemann Hypothesis!

Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:

1) Generate random n-bit numbers

2) Do fast randomized test for primality

Primality Testing Versus Factoring

Primality has a fast randomized algorithm.

Factoring is not known to have a fast
algorithm.

In fact, after thousands of years of
research, the fastest randomized

algorithm takes exp(O(n log n log n) 1/3)
operations on numbers of length n. With

great effort, we can currently factor
200 digit numbers.

number digits prize factored

RSA-100 100 Apr. 1991

RSA-110 110 Apr. 1992

RSA-120 120 Jun. 1993

RSA-129 129 $100 Apr. 1994

RSA-130 130 Apr. 10, 1996

RSA-140 140 Feb. 2, 1999

RSA-150 150 Apr. 16, 2004

RSA-155 155 Aug. 22, 1999

RSA-160 160 Apr. 1, 2003

RSA-200 200 May 9, 2005

RSA-576 174 $10,000 Dec. 3, 2003

RSA-640 193 $20,000 Nov 2, 2005

RSA-704 212 $30,000 open

RSA-768 232 $50,000 open

RSA-896 270 $75,000 open

RSA-1024 309 $100,000 open

RSA-1536 463 $150,000 open

RSA-2048 617 $200,000 open

Google: RSA Challenge Numbers

Miller-Rabin test

The idea is to use a “converse” of Fermat’s Theorem.

We know that:

an-1 n 1

 for any prime n and any a in [2, n-1]. What if we try this

for some number a and it fails. Then we know that n is

NOT prime. Miller-Rabin is based on this idea.

Say we write n-1 as d *2s where d is odd.

Consider the following sequence of numbers mod n:

ad , a2d, a4d. . . ad*2(s-1)
, ad*2s

= an-1 n 1

Each element is the square of the previous one.

ad , a2d, a4d. . . ad*2(s-1)
, ad*2s

= an-1 n 1

If n is prime, then at some point the sequence hits 1

and stays there from then on.

The interesting point is: what is the number right

before the first 1. If n is prime this MUST BE n-1.

Miller-Rabin Test

 To test a number n, we pick a random a and generate

the above sequence. If the sequence does not hit 1,

then n is composite. If there’s an element before the

first 1 and it’s not n-1, then n is composite.

 Otherwise n is “probably prime”.

Miller-Rabin Analysis

If n is composite, then with a random a, the Miller-

Rabin algorithm says “composite” with probability

at least 3/4 .

So if we run the test 30 times and it never says

“composite” then n is prime with “probability” 1-2-60

In other words it’s more likely that you’ll win the

lottery three days in a row than that this is giving a

wrong answer.

 i.e. not bloody likely.

This ocaml implementation of the Miller-Rabin test does not

pick random random witnesses, but rather uses 2, 3, 5, and

7. It’s guaranteed to work up to about 2 billion. See the

accompanying file big_number.ml for a full high precision

implementation of Miller-Rabin with random witnesses.

	Slide 87: Randomness and Computation: Some Prime Examples
	Slide 88: Checking Our Work
	Slide 89: Great Idea: Evaluating on Random Inputs
	Slide 90: Equality checking by random evaluation
	Slide 91: Equality checking by random evaluation
	Slide 92: Equality checking by random evaluation
	Slide 93: Equality checking by random evaluation
	Slide 94
	Slide 95
	Slide 96: What does “evaluate” mean?
	Slide 97
	Slide 98
	Slide 99
	Slide 100: “Random Fingerprinting”
	Slide 101: Earth has huge file X that she transferred to Moon. Moon gets Y.
	Slide 102
	Slide 103: Their estimates
	Slide 104
	Slide 105: The Prime Density Theorem
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110: Really useful fact
	Slide 111: Picking A Random Prime
	Slide 112: Picking A Random Prime
	Slide 113: Picking A Random Prime
	Slide 114: Picking A Random Prime
	Slide 115: Moral of the story
	Slide 116: Earth has huge file X that she transferred to Moon. Moon gets Y.
	Slide 117: Are X and Y the same n-bit numbers?
	Slide 118: Why is this any good?
	Slide 119: Why is this any good?
	Slide 120: Almost there…
	Slide 121
	Slide 122: Are X and Y the same n-bit numbers?
	Slide 123: Exponentially smaller error probability
	Slide 124: Picking A Random Prime
	Slide 125: Primality Testing: Trial Division On Input n
	Slide 126
	Slide 127: Do the primes have a fast decision algorithm?
	Slide 128: Euclid gave us a fast GCD algorithm. Surely, he tried to give a faster primality test than trial division. But Euclid, Euler, and Gauss all failed!
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136: Randomized Primality Test
	Slide 137: Is ECn non-empty for all primes n?
	Slide 138: The saving grace
	Slide 139: Randomized Primality Test
	Slide 140: Randomized Algorithms
	Slide 141
	Slide 142: Another Randomized Primality Test
	Slide 143
	Slide 144: Many Randomized Tests
	Slide 145
	Slide 146: Picking A Random Prime
	Slide 147
	Slide 148
	Slide 149: Miller-Rabin test
	Slide 150
	Slide 151: Miller-Rabin Analysis
	Slide 152

