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Checking Our Work

Suppose we want to check p(x) q(x) = r(x), 
where p, q and r are three polynomials.
               (x-1)(x3+x2+x+1) = x4-1

If the polynomials are long, this requires 
n2 mults by elementary school algorithms 
-- or can do faster with fancy techniques like the Fast 
Fourier transform.

Can we check if p(x) q(x) = r(x) more 
efficiently? 



Great Idea: 
Evaluating on Random Inputs

Let f(x) = p(x) q(x) – r(x).  Is f zero?

Idea: Evaluate f on a random input z.

If we get f(z) = 0, this is evidence that f 
is zero everywhere.

If f(x) is a degree 2n polynomial, it can 
only have 2n roots.  We’re unlikely to 
guess one of these by chance!



Equality checking by random 
evaluation

1. Fix a sample space S={z1, z2,…, zm}  
    with arbitrary points zi, for m=2n/d .

2. Select random z from S with probability 1/m.

3. Evaluate f(z) = p(z) q(z) – r(z)

4. If f(z) = 0, output “equal”
   otherwise output “not equal”



Equality checking by random 
evaluation

What is the probability the algorithm 
outputs “not equal” when in fact f = 0?

Zero!

If p(x)q(x) = r(x) , always correct!



Equality checking by random 
evaluation

What is the probability the algorithm 
outputs “equal” when in fact f  0?

Let A = {z | z is a root of f}.  

Recall that |A|   degree of f ≤ 2n.

Therefore:  P(A)  2n/m = d.  

We can choose d to be small.



Equality checking by random 
evaluation

By repeating this procedure k times, 
we are “fooled” by the event

           f(z1) = f(z2) = … = f(zk) = 0
           when actually f(x)  0

with probability no bigger than

              P(A)  (2n/m)k = d k



Wow!  That idea could be 
used for testing equality 
of lots of different types 

of “functions”!



Yes! E.g., a matrix is just a 
special kind of function.  

Suppose we do a matrix 
multiplication of two nxn 

matrices:

AB  = C

The idea of random evaluation 
can be used to efficiently check 

the calculation.



What does “evaluate” mean? 

Just evaluate the “function” C on a random bit vector r 
by taking the matrix-vector product C × r
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So to test if AB = C we compute 

x = Br, y = Ax (= Abr), and z = Cr

If y = z, we take this as evidence that 
the calculation was correct.  

The amount of work is only O(n2).

Claim:  If AB  C and r is a random n-

bit vector, then Pr(ABr = Cr)   ½.



Claim:  If AB  C and r is a random n-bit vector, then Pr(ABr = Cr)   ½.



So, if a complicated, fancy 
algorithm is used to 
compute AB in time 
O(n2.236), it can be 

efficiently checked with 
only O(n2) extra work, 

using randomness! 



“Random Fingerprinting”

Find a small random “fingerprint” of a large object.

 - the value f(z) of a polynomial at a point z

 - the value Cr at a random bit vector r

This fingerprint captures the essential information 
about the larger object: if two large objects are 
different, their fingerprints usually are different!



Earth has huge file X that she 
transferred to Moon. Moon gets Y.

Earth: X Moon: Y

Did you get that file ok? Was the 
transmission accurate?

Uh, yeah.



Gauss

Let p(n) be the 
number of primes 
between 1 and n. 

I wonder how fast 
p(n) grows? 

Conjecture 
[1790s]: 
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Their estimates

x pi(x) Gauss' Li Legendre x/(log x - 1)

1000 168 178 172 169

10000 1229 1246 1231 1218

100000 9592 9630 9588 9512

1000000 78498 78628 78534 78030

10000000 664579 664918 665138 661459

100000000 5761455 5762209 5769341 5740304

1000000000 50847534 50849235 50917519 50701542

10000000000 455052511 455055614 455743004 454011971



J-S Hadamard

Two independent 
proofs of the 
Prime Density 

Theorem [1896]:
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The Prime Density Theorem

This theorem remains one of the 
celebrated achievements of number 

theory. 

In fact, an even sharper conjecture 
remains one of the great open problems 

of mathematics!



Riemann

The Riemann 
Hypothesis [1859] 
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Slightly easier to show

 p(n)/n ≥ 1/(2 logn).



Random logn bit number is a 
random number from 1..n

p(n) / n ≥ 1/2logn

means that a random 
logn-bit number has 

at least a 1/2logn chance 
of being prime.



Random k bit number is a 
random number from 1..2k

p(2k) / 2k ≥ 1/2k

means that a random 
k-bit number has 

at least a 1/2k chance 
of being prime.



Really useful fact

A random k-bit number has at least 
a 1/2k chance of being prime.

So if we pick 2k random k-bit numbers 

the expected number of primes on the 
list is at least 1



Picking A Random Prime

Many modern cryptosystems (e.g., RSA) 
include the instructions:

“Pick a random n-bit prime.”

How can this be done efficiently?



Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:

1) Generate random n-bit numbers

2) Test each one for primality 



Picking A Random Prime

“Pick a random n-bit prime.”

1)Generate kn random n-bit numbers

 Each trial has a ≥ 1/2n chance of being prime.

 

 Pr[ all kn trials yield composites ]

≤ (1-1/2n)kn = (1-1/2n)2n * k/2 ≤ 1/ek/2



Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:

1) Generate random n-bit numbers

2) Test each one for primality 

For 1000-bit primes, if we try out 10000 random
1000-bit numbers, chance of failing ≤ e-5



Moral of the story

Picking a random prime is 
“almost as easy as”

picking a random number.

(Provided we can check for primality.
More on this later.)



Earth has huge file X that she 
transferred to Moon. Moon gets Y.

Earth: X Moon: Y

Did you get that file ok? Was the 
transmission accurate?

Uh, yeah.



Are X and Y the same n-bit numbers?

p = random 2logn-bit prime
Send (p, X mod p)

Answer to “X  Y mod p ?”

Earth: X Moon: Y



Why is this any good?

Easy case:

 If X = Y, then X  Y (mod p)



Why is this any good?

Harder case:

 What if X ≠ Y? We mess up if p | (X-Y).

 Define Z = (X-Y). To mess up, p must divide Z.

 Z is an n-bit number.

  Z is at most 2n.

 But each prime ≥ 2.

 Hence Z has at most n prime divisors. 



Almost there…

Z has at most n prime divisors.

How many 2logn-bit primes?

  at least 22logn/(2*2logn) = n2/(4logn) >> 2n primes.

Only (at most) half of them divide Z.

A random k-bit number has at least a 
1/2k chance of being prime.



Theorem: Let X and Y be distinct
n-bit numbers. Let p be a random 

2logn-bit prime.

Then
Prob [X = Y mod p] < 1/2

Earth-Moon protocol makes mistake
with probability at most 1/2!



Are X and Y the same n-bit numbers?

EARTH: X MOON: Y

Pick k random 
2logn-bit primes: P1, P2, .., Pk

Send (X mod Pi) for 1 ≤ i ≤ k

k answers to “X = Y mod Pi ?”



Exponentially smaller error probability

If X=Y, always accept.

If X  Y,

 Prob [X = Y mod Pi for all i] ≤ (1/2)k



Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:

1) Generate random n-bit numbers

2) Test each one for primality 

How can we test primality efficiently?



Primality Testing: 
Trial Division On Input n

Trial division up to n
 
 for k = 2 to n do
  if k |n  then
   return “n is not prime”
  otherwise return “n is prime” 

about n divisions



Trial division performs n divisions 
on input n.

 
Is that efficient?

For a 1000-bit number, this will take 
about 2500 operations.

That’s not very efficient at all!!!



Do the primes 
have a fast 

decision 
algorithm?



Euclid gave us a fast 
GCD algorithm. 

Surely, he tried to give 
a faster primality test 

than trial division. 

But Euclid, Euler, and 
Gauss all failed! 



But so many cryptosystems, 
like RSA and PGP, use fast 
primality testing as part of 
their subroutine to generate 
a random n-bit prime! 

What is the fast primality 
testing algorithm that they 
use?



There are fast randomized  
algorithms to do primality 

testing. 

Strangely, by allowing our 
computational model an extra 
instruction for flipping a fair 
coin, we seem to be able to 

compute some things faster!



If n is composite, what would be 
a certificate of compositeness 
for n?

A non-trivial factor of n.

But… even using randomness, no 
one knows how to find a factor 

quickly. 

We will use a different  
certificate of compositeness 

that does not require factoring.



Recall that:

Fermat: ap-1 = 1 mod p.

When working modulo prime p, 
for any a  0, a(p-1)/2 = §1.

X2 = 1 mod p has at most 2 roots.

1 and -1 are roots, so it has no 
others.



“Euler Certificate” Of Compositeness

When working modulo a prime p, 
for any a  0, a(p-1)/2 =  §1. 

We say that a is a certificate of 
compositeness for n, 

if a  0 and a(n-1)/2   §1. 

Clearly, if we find a certificate of 
compositeness for n, we know that n 

is composite.



“Euler Certificates” Of 
Compositeness

ECn = { a 2 Z*
n | a

(n-1)/2  §1 }

NOT-ECn = { a 2 Z*
n | a

(n-1)/2 =  §1 }

If NOT-ECn  Z*
n then 

ECn is at least half of Z*
n    

In other words,
if ECn is not empty, then

ECn contains at least half of Zn
*.



“Euler Certificates” Of 
Compositeness

ECn = { a 2 Z*
n | a

(n-1)/2  §1 }

NOT-ECn = { a 2 Z*
n | a

(n-1)/2 =  §1 }

If NOT-ECn  Z*
n then 

ECn is at least half of Z*
n    

In other words,
if ECn is not empty, then

ECn contains at least half of Zn
*.



Randomized Primality Test

Let’s suppose that ECn contains at least half the elements of Z*n.

Randomized Test:

   For i = 1 to k:

        Pick random ai 2 [2 .. n-1];

        If GCD(ai, n)  1, Halt with “Composite”;

        If ai
(n-1)/2 ≠ §1 , Halt with “Composite”;

   Halt with “I think n is prime. I am only wrong (½)k fraction 
    of times I think that n is prime.” 



Is ECn non-empty for all primes n?

Certain numbers masquerade as primes.

A Carmichael number is a number n such that 
an-1 = 1 (mod n) for all numbers a with gcd(a,n)=1. 

Example:  n = 561 =3*11*17 (the smallest Carmichael number) 
                   1105 = 5*13*17  
                  1729 = 7*13*19

And there are many of them. For sufficiently large m, there 
are at least m2/7 Carmichael numbers between 1 and m.

Unfortunately, no.



The saving grace

The randomized test fails only for Carmichael 
numbers.

But, there is an efficient way to test for 
Carmichael numbers.

Which gives an efficient algorithm for 
primality.



Randomized Primality Test

Let’s suppose that ECn contains at least half the elements of Z*n.

Randomized Test:

   For i = 1 to k:

        Pick random ai 2 [2 .. n-1];

        If GCD(ai, n)  1, Halt with “Composite”;

        If ai
(n-1)/2 ≠ §1 , Halt with “Composite”;

   If n is Carmichael, Halt with “Composite”

   Halt with “I think n is prime. I am only wrong (½)k fraction 
    of times I think that n is prime.” 



Randomized Algorithms

The test we outlined made one-sided error:
 It never makes an error when it thinks n is composite.
 It could just be unlucky when it thinks n is prime.

Another one-sided algorithm that never makes a 
mistake when it thinks n is prime.

Yet another algorithm makes 2-sided error. 
Sometimes it is mistaken when it thinks n is prime, 
sometimes it is mistaken when it thinks n is 
composite. 



n prime means half of a’s satisfy

 a(n-1)/2 = -1 mod n

If n is prime, then Zn
* has a generator g. 

Then g(n-1)/2 = -1 mod n.

A random a2 Zn
* is given by gr for 

uniformly distributed r. 

Half the time, r is odd: 

(gr)(n-1)/2 = -1 mod n



Another Randomized Primality Test

Suppose n is not even, nor is it the power of a number.

Randomized Test:

   For i = 1 to k:

        Pick random ai 2 [2 .. n-1];

        If GCD(ai, n)  1, Halt with “Composite”;

        If ai
(n-1)/2 ≠ §1 , Halt with “Composite”;

   If all k values of ai
(n-1)/2 = +1, Halt with “I think n is composite. 

 I am only wrong (½)k fraction of the times.”

   Halt with “I think n is prime. I am only wrong (½)k fraction 
    of times I think that n is prime.” 



We can prove that if n is an odd 
composite, not a power, and there is 

some a such that a(n-1)/2 = -1, 
then ECn  ;. 

Hence, ECn is at least a 
half fraction of Z*

n.

This algorithm makes 2-sided error. 
Sometimes it is mistaken when it thinks n is prime, 

sometimes it is mistaken when it thinks n is composite. 



Many Randomized Tests

Miller-Rabin test Solovay-Strassen test



In 2002, Agrawal, Saxena, and Kayal 
(AKS) gave a deterministic primality 

test that runs in time O((logn)12).

This was the first deterministic 
polynomial-time algorithm that didn’t 
depend on some unproven conjecture, 

like the Riemann Hypothesis! 



Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:

1) Generate random n-bit numbers

2) Do fast randomized test for primality 



Primality Testing Versus Factoring

Primality has a fast randomized algorithm. 

Factoring is not known to have a fast 
algorithm. 

In fact, after thousands of years of 
research, the fastest randomized 

algorithm takes exp(O(n log n log n) 1/3)
operations on numbers of length n. With 

great effort, we can currently factor 
200 digit numbers.



number digits prize factored

RSA-100 100 Apr. 1991

RSA-110 110 Apr. 1992

RSA-120 120 Jun. 1993

RSA-129 129 $100 Apr. 1994

RSA-130 130 Apr. 10, 1996

RSA-140 140 Feb. 2, 1999

RSA-150 150 Apr. 16, 2004

RSA-155 155 Aug. 22, 1999

RSA-160 160 Apr. 1, 2003

RSA-200 200 May 9, 2005

RSA-576 174 $10,000 Dec. 3, 2003

RSA-640 193 $20,000 Nov 2, 2005

RSA-704 212 $30,000 open

RSA-768 232 $50,000 open

RSA-896 270 $75,000 open

RSA-1024 309 $100,000 open

RSA-1536 463 $150,000 open

RSA-2048 617 $200,000 open

Google:  RSA Challenge Numbers



Miller-Rabin test

The idea is to use a “converse” of Fermat’s Theorem.  

We know that:

an-1 n 1

   for any prime n and any a in [2, n-1].  What if we try this 

for some number a and it fails.  Then we know that n is 

NOT prime.  Miller-Rabin is based on this idea.

 

Say we write n-1 as d *2s  where d is odd.  

Consider the following sequence of numbers mod n:

ad , a2d, a4d. . . ad*2(s-1)
, ad*2s

= an-1 n 1

Each element is the square of the previous one.



ad , a2d, a4d. . . ad*2(s-1)
, ad*2s

= an-1 n 1

 
If n is prime, then at some point the sequence hits 1 

and stays there from then on.

The interesting point is: what is the number right 

before the first 1.  If n is prime this MUST BE n-1.

Miller-Rabin Test

    To test a number n, we pick a random a and generate 

the above sequence.  If the sequence does not hit 1, 

then n is composite.  If there’s an element before the 

first 1 and it’s not n-1, then n is composite.

     Otherwise n is “probably prime”.



Miller-Rabin Analysis

If n is composite, then with a random a, the Miller-

Rabin algorithm says “composite” with probability 

at least 3/4 .

So if we run the test 30 times and it never says 

“composite” then n is prime with “probability” 1-2-60

In other words it’s more likely that you’ll win the 

lottery three days in a row than that this is giving a 

wrong answer.

     i.e. not bloody likely.



This ocaml implementation of  the Miller-Rabin test does not 

pick random random witnesses, but rather uses 2, 3, 5, and 

7.  It’s guaranteed to work up to about 2 billion.  See the 

accompanying file big_number.ml for a full high precision 

implementation of  Miller-Rabin with random witnesses.
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