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Probability Review

• Events and Event spaces

• Random variables

• Joint probability distributions

• Marginalization, conditioning, chain rule, 
Bayes Rule, law of total probability, etc.

• Structural properties

• Independence, conditional independence

• Mean and Variance

• The big picture

• Examples



Sample space and Events

• W : Sample Space, result of an experiment

• If you toss a coin twice W = {HH,HT,TH,TT}

• Event: a subset of W 

• First toss is head = {HH,HT}

• S: event space, a set of events:

• Closed under finite union and complements

• Entails other binary operation: union, diff, etc.

• Contains the empty event and W



Probability Measure

• Defined over (W,S) s.t.

• P(a) >= 0 for all a in S

• P(W) = 1

• If a, b are disjoint, then 

• P(a U b) = p(a) + p(b)

• We can deduce other axioms from the above ones

• Ex: P(a U b) for non-disjoint event

 P(a U b) = p(a) + p(b) – p(a ∩ b)



Visualization

• We can go on and define conditional 
probability, using the above visualization



Conditional Probability

P(F|H) = Fraction of worlds in which H is true that also 
have F true
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From Events to Random Variable

• Almost all the semester we will be dealing with RV

• Concise way of specifying attributes of outcomes

• Modeling students (Grade and Intelligence):

• W =  all possible students

• What are events

• Grade_A = all students with grade A

• Grade_B = all students with grade B

• Intelligence_High = … with high intelligence

• Very cumbersome

• We need “functions” that maps from W to an 
attribute space.

• P(G = A) = P({student ϵ W : G(student) = A})  



Random Variables
W

High

low

A

B A+

I:Intelligence

G:Grade

P(I = high) = P( {all students whose intelligence is high})



Discrete Random Variables

• Random variables (RVs) which may take 

on only a countable number of distinct 

values

– E.g. the total number of tails X you get if you 

flip 100 coins

• X is a RV with arity k if it can take on 

exactly one value out of {x1, …, xk}

– E.g. the possible values that X can take on 

are 0, 1, 2, …, 100



Probability of Discrete RV

• Probability mass function (pmf): P(X = xi)

• Easy facts about pmf

▪ Σi P(X = xi) = 1

▪ P(X = xi∩X = xj) = 0 if i ≠ j

▪ P(X = xi U X = xj) = P(X = xi) + P(X = xj) if i ≠ j

▪ P(X = x1 U X = x2 U … U X = xk) = 1 



Common Distributions

• Uniform X U[1, …, N]

▪ X takes values 1, 2, … N

▪ P(X = i) = 1/N

▪ E.g. picking balls of different colors from a box

• Binomial X Bin(n, p)

▪ X takes values 0, 1, …, n

▪  

▪ E.g. coin flips
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Continuous Random Variables

• Probability density function (pdf) instead of 

probability mass function (pmf)

• A pdf is any function f(x) that describes the 

probability density in terms of the input 

variable x.



Probability of Continuous RV

• Properties of pdf

▪  

▪  

• Actual probability can be obtained by taking the 

integral of pdf

▪ E.g. the probability of X being between 0 and 1 is 
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Cumulative Distribution Function

• FX(v) = P(X ≤ v)

• Discrete RVs

▪ FX(v) = Σvi P(X = vi)

• Continuous RVs

▪  

▪  

 

FX (v) = f (x)dx
−

v
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Common Distributions

• Normal X N(μ, σ2)

▪  

▪ E.g. the height of the entire population
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Joint Probability Distribution

• Random variables encodes attributes

• Not all possible combination of attributes are equally 
likely

• Joint probability distributions quantify this 

• P( X= x, Y= y) = P(x, y)  

• Generalizes to N-RVs

•  

•  
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Chain Rule

• Always true

• P(x, y, z) = p(x) p(y|x) p(z|x, y)

       = p(z) p(y|z) p(x|y, z)

    =…



Conditional Probability
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But we will always write it this way:

events



Marginalization

 
• We know p(X, Y), what is P(X=x)?

• We can use the low of total probability, why?
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Marginalization Cont.

 
• Another example
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Bayes Rule

• We know that P(rain) = 0.5

• If we also know that the grass is wet, then 
how this affects our belief about whether it 
rains or not?

 

P rain |wet( ) =
P(rain)P(wet | rain)

P(wet)

 

P x | y( )=
P(x)P(y | x)

P(y)



Bayes Rule cont.

• You can condition on more variables
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Independence

• X is independent of Y means that knowing Y 
does not change our belief about X.

• P(X|Y=y) = P(X)  

• P(X=x, Y=y) = P(X=x) P(Y=y)

• The above should hold for all x, y

• It is symmetric and written as X ⊥ Y



Independence

• X1, …, Xn are independent if and only if

• If X1, …, Xn are independent and 

identically distributed we say they are iid 

(or that they are a random sample) and we 

write

  

 

P(X1  A1,...,Xn  An ) = P X i  Ai( )
i=1

n



X1, …, Xn ∼ P



CI: Conditional Independence

• RV are rarely independent but we can still 
leverage local structural properties like 
Conditional Independence.

• X ⊥ Y | Z if once Z is observed, knowing the 
value of Y does not change our belief about X

• P(rain ⊥ sprinkler’s on | cloudy)

• P(rain ⊥ sprinkler’s on | wet grass)



Conditional Independence

• P(X=x | Z=z, Y=y) = P(X=x | Z=z) 

• P(Y=y | Z=z, X=x) = P(Y=y | Z=z) 

• P(X=x, Y=y | Z=z) = P(X=x| Z=z) P(Y=y| 

Z=z) We call these factors : very useful concept !!
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Mean and Variance

• Mean (Expectation): 

– Discrete RVs: 

– Continuous RVs:
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Mean and Variance

• Variance: 

– Discrete RVs:

– Continuous RVs: 

• Covariance:

( ) ( ) ( )
2

X P X
i

i iv
V v v= − =

( ) ( ) ( )
2

XV x f x dx
+

−
= −

 

Var(X) = E((X − )2)

Var(X) = E(X 2) − 2

 

Cov(X,Y) = E((X − x )(Y − y )) = E(XY) − xy



Mean and Variance

• Correlation:

 

(X,Y) =Cov(X,Y) / x y

 

−1 (X,Y) 1



Properties

• Mean

–  

–  

– If X and Y are independent, 

• Variance

–  

– If X and Y are independent,
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Some more properties

• The conditional expectation of Y given X 

when the value of X = x is:

• The Law of Total Expectation or Law of 

Iterated Expectation:
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Some more properties

• The law of Total Variance:

 

Var(Y) =Var E(Y | X) + E Var(Y | X) 
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Probability Review III

This part is from https://www.cs.cmu.edu/~epxing/Class/10701-12f/recitation/Probability_Review.ppt



Monty Hall Problem

• You're given the choice of three doors: Behind 

one door is a car; behind the others, goats. 

• You pick a door, say No. 1

• The host, who knows what's behind the doors, 

opens another door, say No. 3, which has a 

goat.

• Do you want to pick door No. 2 instead?

http://upload.wikimedia.org/wikipedia/commons/3/3f/Monty_open_door.svg


Host must

reveal Goat B

  

Host must

reveal Goat A

  

Host reveals

Goat A

or

Host reveals

Goat B

  

http://en.wikipedia.org/wiki/Image:Pfeil.png
http://en.wikipedia.org/wiki/Image:Monty-CurlyPicksCar.svg
http://en.wikipedia.org/wiki/Image:Monty-CurlyPicksGoatA.svg
http://en.wikipedia.org/wiki/Image:Monty-CurlyPicksGoatB.svg
http://en.wikipedia.org/wiki/Image:Monty-CurlyPicksCar.svg
http://en.wikipedia.org/wiki/Image:Pfeil.png
http://en.wikipedia.org/wiki/Image:Monty-DoubleSwitchfromCar.svg
http://en.wikipedia.org/wiki/Image:Monty-CurlyPicksGoatA.svg
http://en.wikipedia.org/wiki/Image:Pfeil.png
http://en.wikipedia.org/wiki/Image:Monty-SwitchfromGoatA.svg
http://en.wikipedia.org/wiki/Image:Monty-CurlyPicksGoatB.svg
http://en.wikipedia.org/wiki/Image:Pfeil.png
http://en.wikipedia.org/wiki/Image:Monty-SwitchfromGoatB.svg
http://en.wikipedia.org/wiki/Image:Pfeil.png


Monty Hall Problem: Bayes Rule

•     : the car is behind door i, i = 1, 2, 3

•  

•     : the host opens door j after you pick 

door i

•  
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Monty Hall Problem: Bayes Rule cont.

• Without loss of generality, i=1, j=3

•  

•  
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•  

•  

Monty Hall Problem: Bayes Rule cont.
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Monty Hall Problem: Bayes Rule cont.

( )1 13

1 6 1

1 2 3
P C H = =  

  

 You should switch!
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Introduction to Randomized 

Algorithms

This part of slides come from Srikrishnan Divakaran  DA-IICT
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Outline

• Preliminaries and Motivation

• Analysis of 

– Randomized Quick Sort

– Karger’s Min-cut Algorithm

• Basic Analytical Tools
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Preliminaries and Motivation
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Quick Sort

Select: pick an arbitrary element x 
in S to be the pivot.

 Partition: rearrange elements so 
that elements with value less than x 
go to List L to the left of x and 
elements with value greater than x 
go to the List R to the right of x.

 Recursion: recursively sort the lists 
L and R.
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Worst Case Partitioning of Quick 

Sort
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Best Case Partitioning of Quick 

Sort
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Average Case of Quick Sort
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Randomized Quick Sort

Randomized-Partition(A, p, r) 
1.  i  Random(p, r) 

2.  exchange A[r]  A[i] 

3.  return Partition(A, p, r)

Randomized-Quicksort(A, p, r)
1.  if p < r

2.     then q  Randomized-Partition(A, p, r)

3.               Randomized-Quicksort(A, p , q-1)

4.               Randomized-Quicksort(A, q+1, r)
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Randomized Quick Sort

• Exchange A[r] with an element chosen at random from A[p…r] in 
Partition.

• The pivot element is equally likely to be any of input elements.

• For any given input, the behavior of Randomized Quick Sort is 
determined not only by the input but also by the random choices of 
the pivot.

• We add randomization to Quick Sort to obtain for any input the 
expected performance of the algorithm to be good.
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Deterministic Algorithms

Goal: Prove for all input instances the algorithm solves the 

problem correctly and the number of steps is bounded by a 

polynomial in the size of the input.

ALGORITHMINPUT OUTPUT
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Randomized Algorithms

• In addition to input, algorithm takes a source of random numbers 

and makes random choices during execution;

• Behavior can vary even on a fixed input;

ALGORITHMINPUT OUTPUT

RANDOM NUMBERS
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Las Vegas Randomized Algorithms

Goal: Prove that for all input instances the algorithm solves the 

problem correctly and the expected  number of steps is bounded by 

a polynomial in the input size. 

 Note: The expectation is over the random choices made by the 

algorithm.

ALGORITHMINPUT OUTPUT

RANDOM NUMBERS
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Probabilistic Analysis of Algorithms

Input is assumed to be from a probability distribution.

 Goal: Show that for all inputs the algorithm works correctly and for 

most inputs the number of steps is bounded by a polynomial in the 

size of the input.

ALGORITHMRANDOM

INPUT

OUTPUT 

DISTRIBUTION
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Min-cut for Undirected Graphs

Given an undirected graph, a global min-cut is a cut (S,V-S) 

minimizing the number of crossing edges, where a crossing edge is 

an edge (u,v) s.t. u∊S and v∊ V-S.

SV - S
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Graph Contraction 

For an undirected graph G, we can construct a new graph G’ by contracting 

two vertices u, v in G as follows:

– u and v become one vertex {u,v} and the edge (u,v) is removed;

– the other edges incident to u or v in G are now incident on the new 

vertex {u,v} in G’;

Note: There may be multi-edges between two vertices. We just keep them.

u v

a
b

c d e

{u,v}

a b

c d e

Graph G                                                    Graph G’
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A

DB

C
contract

Karger’s Min-cut Algorithm 

A

DB

C

(i) Graph G   (ii) Contract nodes C and D   (iii) contract nodes A and CD

A

B

CD

contract

B

ACD

(Iv) Cut C={(A,B), (B,C), (B,D)} 

Note: C is a cut but not necessarily a min-cut.
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Karger’s Min-cut Algorithm

For i = 1 to 100n2 

    repeat 

       randomly pick an edge (u,v)

       contract u and v 

      until two vertices are left

    ci ← the number of edges between them

Output mini ci
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Key Idea

• Let C* = {c1*, c2*, …, ck*} be a min-cut in G and Ci be a cut 

determined by Karger’s algorithm during some iteration i. 

• Ci will be a min-cut for G if during iteration “i” none of the edges in 

C* are contracted.

• If we can show that with prob. Ω(1/n2), where n = |V|, Ci will be a

min-cut, then by repeatedly obtaining min-cuts O(n2) times and 

taking minimum gives the min-cut with high prob.
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Analysis of Karger’s Min-Cut 

Algorithm
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Analysis of Karger’s Algorithm

Let k be the number of edges of min cut (S, V-S).

 If we never picked a crossing edge in the 

 algorithm, then the number of edges between two 
last vertices is the correct answer.

 The probability that in step 1 of an iteration a 

 crossing edge is not picked = (|E|-k)/|E|.

By def of min cut, we know that each vertex v has

degree at least k,  Otherwise the cut ({v}, V-{v}) is

lighter.

Thus |E| ≥ nk/2 and  (|E|-k)/|E| = 1 - k/|E| ≥ 1-2/n.

k

≥ k
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• In step 1, Pr [no crossing edge picked] >= 1 – 2/n

• Similarly, in step 2, Pr [no crossing edge picked] ≥ 1-2/(n-1)

• In general, in step j, Pr [no crossing edge picked] ≥ 1-2/(n-j+1)

• Pr {the n-2 contractions never contract a crossing edge}

– = Pr [first step good] 

     * Pr [second step good after surviving first step] 

     * Pr [third step good after surviving first two steps] 

      *  …

      * Pr [(n-2)-th step good after surviving first n-3 steps]  

       ≥ (1-2/n) (1-2/(n-1)) … (1-2/3)

       = [(n-2)/n] [(n-3)(n-1)] … [1/3] = 2/[n(n-1)] = Ω(1/n2)

Analysis of Karger’s Algorithm
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Introduction to Randomized 

Algorithms:

Monte Carlo Randomized Algorithm

This part of slides come from Srikrishnan Divakaran  DA-IICT
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Monte Carlo Randomized 

Algorithms

Goal: Prove that the algorithm

– with high probability solves the problem correctly;

– for every input the expected  number of steps is bounded by a 

polynomial in the input size. 

 Note: The expectation is over the random choices made by the 

algorithm.

ALGORITHMINPUT OUTPUT

RANDOM NUMBERS
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Monte Carlo versus Las Vegas

• A Monte Carlo algorithm runs produces an answer that is correct 

with non-zero probability, whereas a Las Vegas algorithm always 

produces the correct answer.

• The running time of both types of randomized algorithms is a 

random variable whose expectation is bounded say by a polynomial 

in terms of input size.

• These expectations are only over the random choices made by the 

algorithm independent of the input. Thus independent repetitions of 

Monte Carlo algorithms drive down the failure probability 

exponentially.
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Motivation for Randomized 

Algorithms

• Simplicity;

• Performance;

• Reflects reality better (Online Algorithms);

• For many hard problems helps obtain better complexity bounds 

when compared to deterministic approaches; 
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Analysis of Randomized Quick 

Sort 
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Linearity of Expectation

 If X1, X2, …, Xn are random variables, then


=

=
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XiE
n

i

XiE

1

][

1
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Notation

• Rename the elements of A as z1, z2, . . . , zn, with zi being the ith 

smallest element (Rank “i”).

• Define the set Zij = {zi , zi+1, . . . , zj } be the set of elements between 

zi and zj, inclusive.

106145389 72

z1z2 z9 z8 z5z3 z4 z6 z10 z7
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Expected Number of Total 

Comparisons in PARTITION

Let Xij = I {zi is compared to zj }

 Let  X be the total number of comparisons performed by the 

algorithm. Then

=][XE
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of expectation
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The expected number of comparisons performed by the algorithm is  
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Comparisons in PARTITION

Observation 1: Each pair of elements is compared at most once 

during the entire execution of the algorithm

– Elements are compared only to the pivot point!

– Pivot point is excluded from future calls to PARTITION

Observation 2: Only the pivot is compared with elements in both 
            partitions

z1z2 z9 z8 z5z3 z4 z6 z10 z7

106145389 72

Z1,6= {1, 2, 3, 4, 5, 6} Z8,9 = {8, 9, 10}{7}

pivot

Elements between different partitions are never compared
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Comparisons in PARTITION

Case 1: pivot chosen such as: zi < x < zj 

– zi and zj will never be compared

 

 Case 2: zi or zj is the pivot

– zi and zj will be compared 

– only if one of them is chosen as pivot before any other element 

in range zi to zj 

106145389 72

z1z2 z9 z8 z5z3 z4 z6 z10 z7

Z1,6= {1, 2, 3, 4, 5, 6} Z8,9 = {8, 9, 10}{7}

Pr{ }?i jz is compared to z
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Expected Number of Comparisons 

in PARTITION
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Pr {Zi is compared with Zj}  

= Pr{Zi or Zj is chosen as pivot before other elements in Zi,j} = 2 / (j-i+1)

1 1 1 1

1 1 1 1 1 1 1

2 2 2
[ ] (lg )

1 1

n n n n i n n n

i j i i k i k i

E X O n
j i k k

− − − − −

= = + = = = = =

= =  =
− + +

    

= O(nlgn)



84

Basic Analytical Tools
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Tail Bounds

• In the analysis of randomized algorithms, we need to know how 

much does an algorithms run-time/cost deviate from its expected 

run-time/cost.

• That is we need to find an upper bound on Pr[X deviates from E[X] a 

lot]. This we refer to as the tail bound on X.
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Markov and Chebyshev’s Inequality

Markov’s Inequality If X ≥ 0, then 

         Pr[X ≥ a] ≤ E[X]/a.

Proof. Suppose Pr[X ≥ a] > E[X]/a. Then 

  E[X] ≥ a∙Pr[X ≥ a] > a∙E[X]/a = E[X].

Chebyshev’s Inequality: Pr[ |X-E[X]| ≥ a ] ≤ Var[X] / a2. 

Proof. 

 Pr[ |X-E[X]| ≥ a ] 

 = Pr[ |X-E[X]|2 ≥ a2 ] 

 = Pr[ (X-E[X])2 ≥ a2 ] 

 ≤ E[(X-E[X])2] / a2      // Markov on (X-E[X])2

 = Var[X] / a2
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