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Main objectives of this journey!

• To get a “feeling” of invariants and quotients through concrete
examples on permutations.

• To be able to practice competitive programming problems
involving variants, invariants, duality, and permutations.

Expected duration: 2.5 hours
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Motivation (Competitive Programming)

• lingling (2021-2022)
• o58_mar_c2_permutepermute
• https://szkopul.edu.pl/problemset/problem/
_cVmDXXn2TjF0dF1rW6eazA0/site/?key=statement

• findpermutation (2021-2022)
• abc (2022-2023)
• sortingtapes (2022-2023)
• (Difficult) https://cses.fi/193/list/
• (Difficult)
https://oj.uz/problem/view/JOI18_bubblesort2

• (Difficult)
https://oj.uz/problem/view/JOI18_asceticism

• (Difficult)
https://codeforces.com/contest/1193/problem/C
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Permutation

For any n ∈ N+, we define Sn to be the set of all bijections from
{1, . . . ,n} to {1, . . . ,n}.

Remark
We may write the symbol Sn simply as Sn.
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Notation

Notation

For a bijection σ ∈ Sn, we write σ as
(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)
Example

Let σ1 =
(
1 2 3 4
3 4 2 1

)
, then σ1 ∈ S4

Let σ2 =
(
1 2 3 4 5 6
6 5 3 1 4 2

)
.

Remark

We denote
(
1 2 · · · n
1 2 · · · n

)
by Idn.
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Support

Definition 1
For any permutation σ ∈ Sn, we define its support supp(σ) as the set
of integers from 1 to n where the permutation has effect on it.
Formally,

supp(σ) = {x ∈ {1, . . . ,n} : σ(x) ̸= x}

Example

σ =

(
1 2 3 4 5 6
6 5 3 1 4 2

)
What is supp(σ)?
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k-cycles

Definition 2
A permutation σ ∈ Sn is said to be a k-cycle if there exists
x1, x2, . . . , xk ∈ {1, . . . ,n} all different such that σ(xi) = xi+1 for all
i ∈ {1, . . . , k− 1} and σ(xk) = x1.

Example

σ =

(
1 2 3 4 5
3 2 5 1 4

)
is a 4-cycle.
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Cycle Notation
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Products of permutations

Let σ1 and σ2 be some permutations of Sn, then the product of the
permutations is σ1 ◦ σ2.

Warning
In general σ1 ◦ σ2 may not be σ2 ◦ σ1. (Try to find an example.)

Remark
Product of cycles with disjoint support is commutative.
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Exercises

Exercise 1
List all 3-cycles of S4. Now, fix 2 ≤ k ≤ n, how many k-cycles are
there in Sn?

Exercise 2

Consider the permutation σ =

(
1 2 3 4 5 6 7 8
3 5 4 8 7 6 2 1

)
.

1. Compute σ−1.
2. Write σ as product of disjoint supports.
3. Write σ2 in table notation and cycle notation.
4. Compute σ2019.
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Factorization Theorem

Theorem 3 (Factorization Theorem)
Every permutation can be decomposed as a product of cycles with
disjoint supports. This decomposition is unique up to order in which
the cycles appear.
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Proof
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Transpositions

Definition 4
A transposition is a 2-cycle. Suppose σ ∈ Sn is defined by σ(i) = j
and σ(j) = i for 1 ≤ i < j ≤ n and σ(k) = k for all 1 ≤ k ≤ n where
k /∈ {i, j}, then we may write σ as τi,j.

Proposition 5
For any transposition τ ∈ Sn, τ 2 = Idn.

Proof.
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Decomposition into transpositions

Theorem 6
Every permutation can be decomposed as a product of
transpositions (in a not necessarily unique way).
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Proof
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Exercises

Exercise 3
Let n ∈ N+ and σ ∈ Sn be a permutation.

1. Let σ1, σ2 ∈ S6 where σ1 = (2, 4, 5) and σ2 = (1, 3). Compute
ord(σ1),ord(σ2) and ord(σ1 ◦ σ2).

2. Assume n,p ∈ N+ and 2 ≤ p ≤ n. Prove that for any p-cycle σ in
Sn, σp = Idn and for any 1 ≤ k < p, σk ̸= Idn. Deduce ord(σ).

3. Assume n ∈ N+ and let σ be any permutation in Sn. Show that
ord(σ) ≤ n!
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Exercises

Exercise 4
Fix an integer n ≥ 2, a permutation σ ∈ Sn and consider a p-cycle
c = (a1,a2, . . . , ap). Show that σ ◦ c ◦ σ−1 = (σ(a1), σ(a2), . . . , σ(ap))

Exercise 5
Fix an integer n ≥ 2 and consider the circular permutation
c = (1, 2, . . . ,n− 1,n). Find all the permutations σ ∈ Sn that
commute with c (that is σ ◦ c = c ◦ σ).

Exercise 6
Let n be an odd integer and σ ∈ Sn. Show that 4 divides

n∏
i=1

(σ(i)2 − i2)
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Inversions

Definition 7
For a permutation σ ∈ Sn, we denote by I(σ) the number of
inversions of σ, which is defined by the number of ordered pairs (i, j)
where 1 ≤ i < j ≤ n such that σ(i) > σ(j).
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Signature

Definition 8
For a permutation σ ∈ Sn, we denote by ε(σ) the signature of σ,
which is defined by ε(σ) := (−1)I(σ).

Remark
If ε(σ) = 1, we say that σ is an even permutation. Otherwise
ε(σ) = −1 and we say that σ is an odd permutation.
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An important lemma

Lemma 9
Let n be a positive integer and σ ∈ Sn. Then

ε(σ) =
∏

1≤i<j≤n

σ(i)− σ(j)
i− j
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Proof
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Exercises

Exercise 7
Let σ be a permutation, show that σ2 is an even permutation.

Exercise 8
In Sn, consider τ = (1 2) and σ = (1 2 · · ·n).

1. Let k be an integer such that 0 ≤ k ≤ n− 2. Compute σk ◦ τ ◦ σ−k.
2. Deduce that every permutation in Sn can be written as a product
of a sequence of τ and σ.
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Bubble sort (lingling) (2021-2022)

What is the number of swaps during a bubble sort? In other words,
for any permutation σ ∈ Sn, what is the minimum number of k such
that σ = τ1 ◦ τ2 ◦ · · · ◦ τk where for any 1 ≤ i ≤ k, there exists
1 ≤ a < n such that τi = τa,a+1?

Proposition 10
Given a permutation σ ∈ Sn, the number of swaps in the bubble sort
of σ is I(σ).
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Proof
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Inversion Table

Recall the following definition.

Definition 11
For a permutation σ ∈ Sn, we denote by I(σ) the number of
inversions of σ, which is defined by the number of ordered pairs (i, j)
where 1 ≤ i < j ≤ n such that σ(i) > σ(j).

If, instead of computing the total number of inversions, we define
Ij(σ) for each 1 ≤ j ≤ n to be the number of indices i where 1 ≤ i < j
such that σ(i) > σ(j), we obtain the inversion table.
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Example

Let σ =

(
1 2 3 4 5 6
6 5 3 1 4 2

)
.

Then the inversion table is

I1(σ) I2(σ) I3(σ) I4(σ) I5(σ) I6(σ)
0 1 2 3 3 4
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Exercises

Exercise 9
Write a program which receives a permutation and compute its
invariant table. What is the best complexity you can get?

Exercise 10
Write a program which receives an invariant table and reconstruct a
permutation. What is the best complexity you can get?
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Asceticism (JOI Spring Camp 2017-2018)

Problem from
https://oj.uz/problem/view/JOI18_asceticism.
• Kukai reads the sutra with N sentences. These sentences are
ordered, and he has to read in order.

• Each sentence has one integer between 1 and N, inclusive. No
two different sentences have the same number.

• He has to read the sentence with the integer i (1 ≤ i ≤ N) in the
i-th period among the N equally divided time periods in a day.
Each sentence is so short that it is always possible for him to
read a sentence in a period.

Kukai wants to read the whole sutra as fast as possible. However,
how many days it takes for him to finish depends on the integers on
the sentences in the sutra. JOI-kun was asked by Kukai to count the
number of possible ways of integers on the sentences that takes
Kukai exactly K days to finish reading, if he reads optimally.

28
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Equivalent reformulation: Eulerian number

Given N and K. Count the number of permutations of length N such
that there are K “ascents”. An index 2 ≤ i ≤ N is said to be an ascent
of σ ∈ SN if σ(i− 1) < σ(i).
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Equivalence Relations

Definition 12
Let A be a set. We call a set R ⊆ A× A an equivalence relation if it
satisfies three following properties:

• (Reflexivity) For all x ∈ A, (x, x) ∈ R.
• (Symmetry) For all x, y ∈ A if (x, y) ∈ R then (y, x) ∈ R also.
• (Transitivity) For all x, y, z ∈ A if (x, y) ∈ R and (y, z) ∈ R then
(x, z) ∈ R also.
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Example: Congruence

Let n ∈ N+. We introduce a relation R ⊆ Z× Z defined by

R = {(x, y) ∈ Z× Z : n divides (x− y)}

and write x ≡ y (mod n) whenever (x, y) ∈ R (and x ̸≡ y (mod n)
whenever (x, y) /∈ R).
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Example: The last digit

Define f : Z → {0, 1, . . . , 9} by

f(x) = the last digit of x.

Then the relation

R := {(x, y) ∈ Z× Z : f(x) = f(y)}

is an equivalence relation.
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Generalization: Partitions

In general, if f : A→ B, then one can define an equivalence relation
Rf ⊆ A× A as

R := {(x, y) ∈ A× A : f(x) = f(y)}.

In other words, one try to “color” each element of A with colors in B,
and the relation essentially means (x, y) ∈ R if and only if x has the
same color as y.
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Another perspective: from equivalence to partitions

For a given set A. Suppose R is an equivalence relation on A. For
each element x of A one can define an equivalence class of x,
denoted by [x]R, by

[x]R := {y ∈ A : (x, y) ∈ R}.

Observe that the set {[x]R : x ∈ A} defines a partition in A, i.e. the
function

f :
{
A → P(A)
x → [x]R

is a coloring of each element x by the color [x]R.
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Identifying things

Definition 13 (Quotient of a set by an equivalence relation)
From an equivalence relation R on A, the set of partitions

{[x]R : x ∈ A}

is called “the quotient of A by R” and is denoted by A/R.
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Example: The set of integers

If one has N = {0, 1, . . . } but not Z, how would one define Z?

People came up with a way to define Z as (N× N)/ ∼ where

∼ := {((x1, x2), (y1, y2)) ∈ (N× N)× (N× N) : x1 + y2 = x2 + y1}.
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Extras: The rationals and the reals

We may do similar things to construct the rationals. That is, on
Z× (Z \ {0}) one defines the equivalence relation ∼Q as

∼Q := {((x1, x2), (y1, y2)) ∈ (Z×(Z\{0}))×(Z×(Z\{0})) : x1y2 = x2y1}.

The reals are a bit complicated. It can be defined (in one way, among
a few other definitions) as the quotient of the set of Cauchy
sequences which is identified when the difference (term-wise) tends
to zero. That is, consider the set of functions on N → Q. We say f is
(rational) Cauchy if for all ε ∈ Q>0 there exists N ∈ N such that for all
n,m ∈ N if n,m ≥ N then |f(n)− f(m)| < ε. Let S be the set of all
these functions. Then we define ∼R as

∼R := {(f,g) ∈ S×S : ∀ε ∈ Q>0, ∃N ∈ N, ∀n ∈ N,n ≥ N⇒ |f(n)−g(n)| < ε}.

Then we define R to be S/ ∼R.
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abc (2022-2023)

We call the string composed of letters “a”, “b”, or “c” as abc-string.
Define the norm of an abc-string as

N(S) = (Na(S)− Nb(S))2 + (Nb(S)− Nc(S))2 + (Nc(S)− Na(S))2

where Na(S),Nb(S),Nc(S) denotes the number of “a”s, “b”s, and “c”s
inside S respectively.

Given an abc-string S. Find the substring that attains the maximum
norm (if there are multiple such substrings, return any).
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Observations

The order of characters in S is not important, one can just consider
(Na(S),Nb(S),Nc(S)) as a triple, and define

Ñ(a,b, c) := (a− b)2 + (b− c)2 + (c− a)2

as a function from N× N× N to N.
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Observations

Ñ(a,b, c) = Ñ(a+ 1,b+ 1, c+ 1) = . . .

How about we quotient the set N× N× N by this “coloring” of Ñ?
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Observations
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Geometric Intuition

0

2

40 1 2 3 4

0

2

4

x

y

41



Geometric Intuition

0

2

40 1 2 3 4

0

2

4

x

y

42



Geometric Intuition
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Geometric Intuition
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Geometric Intuition
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Geometric Intuition
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Projection onto the plane x+ y+ z = 0

If (a,b, c) and (a′,b′, c′) are two points, and let
π : N× N× N → N× N× N be the projection function into the plane
x+ y+ z = 0, then Ñ(a− a′,b− b′, c− c′) = Ñ(π(a,b, c)− π(a′,b′, c′)).

Proof.
One may define π(a,b, c) as
(a−min(a,b, c),b−min(a,b, c), c−min(a,b, c)) for all a,b, c ∈ N.
Then (let m := min(a,b, c) and m′ = min(a′,b′, c′)),

Ñ(π(a,b, c)− π(a′,b′, c′))

= Ñ((a−m,b−m, c−m)− (a′ −m′,b′ −m′, c′ −m′))

= Ñ(a− a′ −m+m′,b− b′ −m+m′, c− c′ −m+m′)

= Ñ(a− a′,b− b′, c− c′).

This completes the proof.
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Correspondence

abc-string

(N× N× N)n

(N× N× N)n+1

(point on plane x+ y+ z = 0)n+1

ϕ

quicksum

π

Now, if we want to find a substring that maximizes N, it corresponds
to finding the indices L and R (0 ≤ L < R ≤ N) such that
Ñ(QSR − QSL) is maximized, which is actually: “find the farthest pair
of points in the projected plane”.
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Computation in the plane

0

20 1 2 3

−2

0

2
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y

Or you could even project it to the plane z = 0. (Try to prove that this
also works!) 49
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Partial order

Definition 14
A binary relation R on A (i.e. a subset of A× A) is said to be a partial
order if

• (Reflexivity) For all x ∈ A, (x, x) ∈ R.
• (Antisymmetry) For all x, y ∈ A, if (x, y) ∈ R and (y, x) ∈ R then
x = y.

• (Transitivity) For all x, y, z ∈ A if (x, y) ∈ R and (y, z) ∈ R then
(x, z) ∈ R also.

Example
Let ⪯ be a relation on N defined by
⪯ := {(x, y) ∈ N× N : ∃k ∈ N, y = kx}.
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Another example

Example
Let S = {a,b, c,d}, then consider the power set P(S) and the relation
⊆ defined on the power set. (P(S),⊆) is a partially ordered set.
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Hasse Diagrams

Figure 1: First diagram
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Hasse Diagrams

Figure 2: Second diagram
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Hasse Diagrams

Figure 3: Third diagram
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Hasse Diagrams

Figure 4: Fourth diagram
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Figures credits: ”Watchduck”, Public domain, via Wikimedia Commons.
(see https://en.wikipedia.org/wiki/Hasse_diagram)
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Total order

Definition 15
A partial order R on A is said to be total if and only if for all x, y ∈ A,
(x, y) ∈ R or (y, x) ∈ R.
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Chains and antichains

Let R be a partial order on A.

Definition 16
A set S ⊆ A is a chain (with respect to the partial order R) if and only
if R is a total order of S.

Definition 17
A set S ⊆ A is an antichain (with respect to the partial order R) if and
only if for all x ̸= y ∈ S, both (x, y) and (y, x) are not in R. (i.e. no pair
of elements in S is comparable)
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Example (divisibility)
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Another Example
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An LIS Problem

Given an array A of N elements, find the length of longest increasing
subsequence.
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Another LIS Problem

Chef plays with the sequence of N numbers. During a single move
Chef is able to choose a non-decreasing subsequence of the
sequence and to remove it from the sequence. Help him to remove
all the numbers in the minimal number of moves.

Problem source:
https://www.codechef.com/problems/CHRL3
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Dilworth’s theorem

Theorem 18 (Dilworth’s theorem)
For a finite partially ordered set S with partial order ⪯ on S, the
largest antichain has the same size as the smallest chain
decomposition of S.

What is a “chain decomposition”?

Definition 19
A chain decomposition D is a partition of S such that for any X ∈ D, X
is a chain.

63



Dilworth’s theorem

Theorem 18 (Dilworth’s theorem)
For a finite partially ordered set S with partial order ⪯ on S, the
largest antichain has the same size as the smallest chain
decomposition of S.

What is a “chain decomposition”?

Definition 19
A chain decomposition D is a partition of S such that for any X ∈ D, X
is a chain.

63



Dilworth’s theorem

Theorem 18 (Dilworth’s theorem)
For a finite partially ordered set S with partial order ⪯ on S, the
largest antichain has the same size as the smallest chain
decomposition of S.

What is a “chain decomposition”?

Definition 19
A chain decomposition D is a partition of S such that for any X ∈ D, X
is a chain.

63



The Same Old Example
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Proof (given by Galvin, 1994)

By induction, remove a maximal element a of S and assume that
S− {a} has a smallest chain decomposition P with k chains (we write
P as P = {P1,P2, . . . , Pk} where Pi is a chain, i.e., a totally-ordered
subset of S) and that A0 is a largest antichain with size k. Then for all
i ∈ {1, . . . , k}, A0 ∩ Pi ̸= ∅. (Why?)

Moreover, A0 ∩ Pi has cardinality 1 (and they are all different).

Before going to the main proof. Let us consider that proving that S
has either an antichain of size k+ 1 or a chain decomposition of size
k is enough. Why?

Observe that S cannot have an antichain of size more than k+ 1.
(because we only add {a} to S− {a} which has the size of maximum
antichain as k) Also observe that we cannot have a chain
decomposition of size less than k. (because S− {a} already has a
smallest chain decomposition of size k)
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P as P = {P1,P2, . . . , Pk} where Pi is a chain, i.e., a totally-ordered
subset of S) and that A0 is a largest antichain with size k. Then for all
i ∈ {1, . . . , k}, A0 ∩ Pi ̸= ∅. (Why?)

Moreover, A0 ∩ Pi has cardinality 1 (and they are all different).

Before going to the main proof. Let us consider that proving that S
has either an antichain of size k+ 1 or a chain decomposition of size
k is enough. Why?

Observe that S cannot have an antichain of size more than k+ 1.
(because we only add {a} to S− {a} which has the size of maximum
antichain as k) Also observe that we cannot have a chain
decomposition of size less than k. (because S− {a} already has a
smallest chain decomposition of size k)
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Proof (cont.)

If S has an antichain of size k+ 1, can the smallest chain
decomposition have size k?

The answer is no, because if there is an antichain of size k+ 1 and a
chain decomposition of size k, then by the pigeonhole principle, two
elements of the antichain belong to the same chain, which is a
contradiction.

Now, if S has a chain decomposition of size k, can there be an
antichain of size k+ 1? (Surely there is an antichain of size k in S
because A0 is already an antichain of size k in S− {a})

The same argument holds, if there is an antichain of size k+ 1 then
two elements belong to the same chain (by the pigeonhole principle)
and this is a contradiction.
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Proof (cont.)
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Proof (cont.)
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Proof (cont.)

Now, consider each chain Pi ∈ P. Take the maximal element xi from
Pi such that there exists an antichain of size k in S− {a} containing
xi. (Why is this always possible?)

Is A = {x1, x2, . . . , xk} an antichain of S− {a}? Why?
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Proof (cont.)

Now, consider each chain Pi ∈ P. Take the maximal element xi from
Pi such that there exists an antichain of size k in S− {a} containing
xi. (Why is this always possible?)

Is A = {x1, x2, . . . , xk} an antichain of S− {a}? Why?
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Proof (cont.)

Now if xi ⪯ a for some i ∈ {1, . . . , k}.

Consider the chain K = {a} ∪ {z ∈ Pi : z ⪯ xi}.

What is the size of the smallest chain decomposition of S− K? Well,
by the induction hypothesis, it is equal to the maximum size of
antichain in S− K, which, hmm... How much is it?

Surely it is no more than k, and at least it is k− 1 (because A− {xi} is
an antichain). The question is, can it be k?

The answer is no. Basically, S− K has all the chains Pj except Pi
where K is removed from Pi. If Pi − K has an element y such that
(A− {xi}) ∪ {y} is an antichain, then xi ⪯ y, which contradicts the
condition that xi is the maximal element such that there exists an
antichain of size k in S− {a} containing xi.
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Proof (cont.)

Now if xi ⪯ a for some i ∈ {1, . . . , k}.
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Proof (cont.)
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Proof (cont.)
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Proof (cont.)

Now if xi ⪯ a for some i ∈ {1, . . . , k}.
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(A− {xi}) ∪ {y} is an antichain, then xi ⪯ y, which contradicts the
condition that xi is the maximal element such that there exists an
antichain of size k in S− {a} containing xi.
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Proof (cont.)

So the size of smallest chain decomposition of S− K is k− 1, which is
equal to the maximum size of antichain in S− K. Now when we
consider S = (S− K) ∪ K, we can think of adding the chain K to the
existing chain decomposition of S− K. Now, the size of the new chain
decomposition is k− 1+ 1 = k. Which completes the proof in this
case (where there exists i ∈ {1, . . . , k} such that xi ⪯ a).
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Proof (cont.)

Now if xi ⪯̸ a for all i ∈ {1, . . . , k}. By our assumption that a is
maximal, a ⪯̸ xi for all i ∈ {1, . . . , k} also. So A ∪ {a} is an antichain
of size k+ 1. This completes the proof in this case (where there is no
i ∈ {1, . . . , k} such that xi ⪯ a)

Hence, the two cases are now proved.
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Proof (cont.)

Now if xi ⪯̸ a for all i ∈ {1, . . . , k}. By our assumption that a is
maximal, a ⪯̸ xi for all i ∈ {1, . . . , k} also. So A ∪ {a} is an antichain
of size k+ 1. This completes the proof in this case (where there is no
i ∈ {1, . . . , k} such that xi ⪯ a)

Hence, the two cases are now proved.
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Proof (see also)

(I read it from https://en.wikipedia.org/wiki/Dilworth%
27s_theorem#Inductive_proof)
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Problems



Let’s try

• lingling (2021-2022)
• o58_mar_c2_permutepermute
• https://szkopul.edu.pl/problemset/problem/
_cVmDXXn2TjF0dF1rW6eazA0/site/?key=statement

• findpermutation (2021-2022)
• abc (2022-2023)
• sortingtapes (2022-2023)
• (Difficult) https://cses.fi/193/list/
• (Difficult)
https://oj.uz/problem/view/JOI18_bubblesort2

• (Difficult)
https://oj.uz/problem/view/JOI18_asceticism

• (Difficult)
https://codeforces.com/contest/1193/problem/C
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Sources

• Discrete mathematics lectures provided by François Alouges (at
École Polytechnique)

• Reduction of Endomorphisms lectures provided by David
Burguet (at École Polytechnique) with notes provided by Javier
Fresán.

• An Introduction to the Analysis of Algorithms (2nd edition) by
Robert Sedgewick and Phillipe Flajolet.

• Elementary Set Theory lectures provided by Thanatkrit Kaewtem
(at Mahidol Wittayanusorn School).
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Thank you!

And good luck with the training camp!
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