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Motivation (Competitive Programming)

- lingling (2021-2022)
- 058 _mar_c2_permutepermute

- https://szkopul.edu.pl/problemset/problem/
_cVmDXXn2TjFOdFlrw6eazA0/site/?key=statement

- findpermutation (2021-2022)

- abc (2022-2023)

- sortingtapes (2022-2023)

- (Difficult) https://cses.fi/193/1ist/
- (Difficult)

https://oj.uz/problem/view/J0I18_bubblesort2

- (Difficult)

https://oj.uz/problem/view/JOI18_asceticism

- (Difficult)

https://codeforces.com/contest/1193/problem/C


https://szkopul.edu.pl/problemset/problem/_cVmDXXn2TjF0dF1rW6eazA0/site/?key=statement
https://szkopul.edu.pl/problemset/problem/_cVmDXXn2TjF0dF1rW6eazA0/site/?key=statement
https://cses.fi/193/list/
https://oj.uz/problem/view/JOI18_bubblesort2
https://oj.uz/problem/view/JOI18_asceticism
https://codeforces.com/contest/1193/problem/C
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For any n € N, we define @to be the set of all bijections from

{1,...,n}to {1,...,n}.

Remark
We may write the symbol &, simply as S,
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Definition 1

For any permutation o € &,,, we define its support supp(o) as the set
of integers from 1to n where the permutation has effect on it.
Formally,

supp(o) ={x e {1,...,n}: o(x) # x}

Example

1 2 4 5 6 .
- = 5 ?
o= (6 ;@ 1% 2) What is supp(a).

(\,‘1,%,9,57



Definition 2
A permutation g € &, is said to be a R-cycle if there exists

ﬁ,)_(_z_,...,xke{1,...,n}aHdiﬁer‘emtsuchthatg(x,-):x,-+1 for all
ic{1,...,k—1}and o(xg) = xi. s\-atd-c
Example <
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Cycle Notation
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Products of permutations

SORRAIOEEACER

Let K and o, be some permutations of &, then the product of the
permutanns is oy 0 0.
Warning

In general o4 0 o, may not be o, o oy. (Try to find an example.)
—

—_—

Remark
Product of cycles with disjoint support is commutative.
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Exercises

Exercise 1
List all 3-cycles of &,. Now, fix 2 < kR < n, how many k-cycles are
there in &,?

Exercise 2

. . 1 2 4 7
Consider the permutation o = ( 3 > 6 8).

35 4 8 7 6 2 1

1. Compute o~ ".

2. Write o as product of disjoint supports.

3. Write o2 in table notation and cycle notation.
4

. Compute 9.



Factorization Theorem
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Theorem 3 (Factorization Theorem)

E\./e.rZ. permutation ca.n be decomg.o.sed. as a.product of cycle§ Wlth
disjoint supports. This decomposition is unique up to order in which
the cycles appear.

1






Transpositions

Swap W23 &%
T 531 «1
Definition 4
A transposition is a 2-cycle. Suppose o € &, is defined by (i) =
ando(j) =ifor1<i<j<nando(k)=~kforall1<k<nwhere
k¢ {i,j} then we may write o as 7.

Tes



Transpositions

Definition 4

A transposition is a 2-cycle. Suppose o € &, is defined by o(i) =
and o(j) = ifor1<i<j<nando(k) =kforall1<k<nwhere
k¢ {i,j}, then we may write o as ;.

Proposition 5
For any transposition T € &, 72 = Id’_,,
Proof.

T ""T\d
tz =_'t.\..s ‘T'l,j .



Decomposition into transpositions

\Z—?Lt\’ = OT_ "'-C.“-C
4LS'\31> Co’ o o

e = L2 3 & S
G T"’(tzx ¢ <

Theorem 6

e —

Every permutation can be decomposed as a product of
transpositions (in a not necessarily unique way).

14






Exercises

Exercise 3
Letn € Ny and o € &, be a permutation.

1. Let 01,0, € &g where o1 = (2,4,5) and o, = (1,3). Compute
ord(e1),0rd(o,) and ord(oq o o).

2. Assume n,p € N, and 2 < p < n. Prove that for any p-cycle o in
&, 0P =1d, and for any 1 < k < p, o® # Id,. Deduce ord(o).

3. Assume n € N, and let o be any permutation in &,. Show that
ord(e) < n!

16



Exercises

Exercise 4

Fix an integer n > 2, a permutation o € &, and consider a p-cycle
c=(a,0,...,0ap). Showthat cocoo™" = (o(ar),0(az),...,o(ap))
Exercise 5

Fix an integer n > 2 and consider the circular permutation
c=(1,2,...,n—=1,n). Find all the permutations o € &, that
commute with ¢ (thatiscoc=coo).

Exercise 6

Let n be an odd integer and o € &,. Show that 4 divides

[T~

=1



(1,3)
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Definition 7 AWty Y O —

S

For a permutation o € &;, we denote by /(o) the number of
inversions of o, which is defined by the number of ordered pairs (i,))
where 1 < < j < nsuch that o(i) > o()).

163 ]
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Definition 8

For a permutation o € &,, we denote by (o) the signature of o,
which is defined by (o) := (=1)(?).

Remark

Ifago) =1, we say that o is an even permutation. Otherwise
g(o) = —1and we say that ¢ is an odd permutation.
-

19



An important lemma

Lemma 9

Let n be a positive integer and o € &,,. Then

20






Exercises

Exercise 7
Let o be a permutation, show that o2 is an even permutation.

. \ 2 AR — - ~on
Exercise 8 9

In &, consider T = (12) and o = (12---n).

1. Let k be an integer such that 0 < k < n—2. Compute c® o100 *.

2. Deduce that every permutation in &, can be written as a product
of a sequence of T and o.

22



Bubble sort (Lingling) (2021-2022)

What is the number of swaps during a bubble sort? In other words,
for any permutation o € &,,, what is the minimum number of k such
thato =momo--- O-T}? where for any 1 < i < R, there exists
1<a<nsuchthat rj = 74,0417

Proposition 10

Given a permutation o € &, the number of swaps in the bubble sort

ofoisﬂ

23
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Inversion Table

Recall the following definition.

Definition 11

For a permutation o € &,, we denote by @the number of
inversions of o, which is defined by the number of ordered pairs (i, )
where 1 < < j < nsuch that o(i) > o()).

25



Inversion Table

Recall the following definition.

Definition 11

For a permutation o € &, we denote by /(o) the number of
inversions of o, which is defined by the number of ordered pairs (i, )
where 1 < < j < nsuch that o(i) > o()).

If, instead of computing the total number of inversions, we define
li(o) for each 1 <j < n to be the number of indices i where 1 <i <
such that o(i) > o(j), we obtain the inversion table.

¢ < @ :[J,go-)
S = oY) -



1T 2 3 4 5 6
Let o = .
€ ¥ 3 142

oi

Then the inversion table is

11(0’) 12(0’) 13(0’) /4(0‘) /5(0‘) 16(0’)
: D

26



Exercises

oG\  vawsc\e

Exercise 9

Write a program which receives a permutation and compute its
invariant table. What is the best complexity you can get?
Exercise 10

Write a program which receives an invariant table and reconstruct a
permutation. What is the best complexity you can get?

27



Asceticism (JOI Spring Camp 2017-2018)

Problem from
https://oj.uz/problem/view/JO0I18 asceticism.

- Kukai reads the sutra with N sentences. These sentences are
ordered, and he has to read in order.

- Each sentence has one integer between 1 and N, inclusive. No
two different sentences have the same number.

- He has to read the sentence with the integer i (1 < i < N)in the
i-th period among the N equally divided time periods in a day.
Each sentence is so short that it is always possible for him to
read a sentence in a period.

Kukai wants to read the whole sutra as fast as possible. However,
how many days it takes for him to finish depends on the integers on
the sentences in the sutra. JOl-kun was asked by Kukai to count the
number of possible ways of integers on the sentences that takes

Kukai exactly K days to finish reading, if he reads optimally.
28


https://oj.uz/problem/view/JOI18_asceticism

Equivalent reformulation: Eulerian number
3
7

Given N and K. Count the number of permutations of length N such
that there are K “ascents”. An index 2 < i < N is said to be an ascent
of o € Sy ifa(i—1) <a(i).

—

29
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Equivalence Relations

Definition 12

Let A be a set. We call a set Rig A x A an equivalence relation if it
satisfies three following properties:

Reflexivity) For all x € A, (x,x) € R.
Symmetry) For all x,y € A if (x,y) € R then (y,x) € R also

(

(

s

- (Transitivity) For all x,y,z € A if (x,y) € R and (y,z) € R then
(x,2) € R also.

30



Example: Congruence

¥ < ._j (Mo d W)
Let n € N,. We introduce a relation R C Z x Z defined by

R={(x,y) € Z x Z: n divides (x — y)}

and write x =y (mod n) whenever (x,y) € R (and x £ y (mod n)

(
whenever (x,y) ¢ R).
\
V)~ O

31



Example: The last digit

23~ 2387 ~an%

Define f: Z — {0,1,...,9} by
f(x) = the last digit of x.

Then the relation

is an equivalence relation.

32



Generalization: Partitions

X ~Y

In general, if f: A — B, thén one can define an Wn

RrCAxAas
Ri={(hy) €A x A FX) =)},

In other words, one try to}“color” each element of A with colors in B,
and the relation essentially means (x,y) € R if and only if x has the
same color as y.

33



Another perspective: from equivalence to partitions

R. A

For a given set A. Suppose R is an equivalence relation on A. For
each element x of A one can define an equivalence class of x,
denoted by [x]r, by

Pi? ={yeA: (x,y) € R}.

Observe that the set {[x]g: x € A} defines a partition in A, i.e. the
function

is a coloring of each element x by the color [x]g.

34



Identifying things

A R={Or et Yy A Y
A/k = APy A Y

Definition 13 (Quotient of a set by an equivalence relation)
—————

From an equivalence relation R on A, the set of partitions

{r: x € A}

O ———

is called “the quotient of A by R” and is denoted by A/R.
G Ri= {xy\ew X?&}
G/R = <C\"Cl S }.

35



Example: The set of integers

If one has N ={0,1,...} but not Z, how would one define Z?
— = >

36



Example: The set of integers
7 =N/

If one has N ={0,1,...} but not Z, how would one define Z?

People came up with a way to define Z as (N x N)/ ~ where

(N;: {((1,%2), (11,¥2)) € (N X N) x (N X N): X1 42 = X ‘H/a

36



Extras: The rationals and the reals

We may do similar things to construct the rationals. That is, on
Z x (Z\ {0}) one defines the equivalence relation ~q as

~q = {((x1,%), (y1,¥2)) € (Zx(Z\{0})) x(Zx (Z\{0})): xay2 = Xa¥1}-

37



Extras: The rationals and the reals

We may do similar things to construct the rationals. That is, on
Z x (Z\ {0}) one defines the equivalence relation ~q as

~q = {((x1,%), (y1,¥2)) € (Zx(Z\{0})) x(Zx (Z\{0})): xay2 = Xa¥1}-

The reals are a bit complicated. It can be defined (in one way, among
a few other definitions) as the quotient of the set of Cauchy
sequences which is identified when the difference (term-wise) tends
to zero. That is, consider the set of functions on N — Q. We say f is
(rational) Cauchy if for all e € Qs there exists N € N such that for all
n,m e Nif n,m > N then |[f(n) — f(m)| < e. Let S be the set of all
these functions. Then we define ~ as

~r:={(f,g) € SxS: Ve € Q=0,IN € N,¥n € N,n > N = [f(n)—g(n)| < €}.

Then we define R to be S/ ~g.

37



abc (2022-2023)

NL/ZBL\\CA cc)= (24.\2-1- (e-3%s G-2*
QJ = 0+ A\ =2,

We call the string composed of letters “a”, “b”, or “c” as abc-string.
Define the norm of an abe-string as
2 - 2 -3 ?2 - 2
N(S) = (Na(S) — Np(S))? + (Nb(S) = Ne(5))* + (Ne(S) — Na(S))?

where Nq(S), Np(S), Nc(S) denotes the number of “a’s, “b"s, and “c"s
inside S respectively.

Given an abc-string S. Find the substring that attains the maximum
norm (if there are multiple such substrings, return any).

— aS cacc

ex NS)

38



b == saic

e——
————

The order of characters in S is not important, one can just consider
(Na(S), Np(S), Nc(S)) as a triple, and define

Mmbmyzig;@iiﬂrfd”+@—af

as a function from N x N x N to N. N(Q( _ \
—_— R O&-
ahad cb ‘

t—————.
A — 1Yoy\\Py6\0 —— o\M\1 2 2A\2
L — 0@010 oflo\1 4 2{213
C. — O\Aoloki0 o\gJo 0 o\4) 4

39
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Cxn
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N
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( N(a, bcf)_kva+1 b+1, c+1' _\4

Q(atn, b2, 1) = Ny
AR

/’\7-' N"W"‘N—s@
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N(a,b,c)=N(@+1,b+1,c+1) =...

How about we quotient the set N x N x N by this “coloring” of N?

40



Geometric Intuition

ﬁ(o 0 o)""i;’

V)
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Geometric Intuition

42



Geometric Intuition

43



Geometric Intuition

I



Geometric Intuition

45



Geometric Intuition

46



Projection onto the planex+y+z=0

If (a.b,c) and (a’. b’.¢') are two points, and let

m: Nx NxN-— Nx N x N be the projection function into the plane
X+y+z=0,thenN(a—a’,b—b’,c—c)=N(n(a,b,c)—=(a’, b/, c")).

(a5 =€)

47



Projection onto the planex+y+z=0

If (a,b,c) and (a’,b’, c’) are two points, and let
m: Nx NxN-— Nx N x N be the projection function into the plane
X+y+z=0,then N(a—a’,b—b',c—c) = N(x(a,b,c) —x(a’, b, c’)).
Proof.
One may define w(a, b, c) as
(a = min(a, b, c), b —min(a, b, c),c —min(a,b,c)) forall a,b,c € N.
Then (let m := min(a, b, c) and m’ = min(a’, b’, ")),
N(w(a,b,c) — w(a’,b’,c"))

=N((a—m,b—m,c—m)—(a —m',b'—m’',c —m"))

a

This completes the proof. O

47



Correspondence

~~ bc-string
@Qx—65 ) —

L’:g‘ N "y L <) y }
(N x N x N)"
lquicksum)

(N x N x N)"1
(point on plane x +y +z = 0)"*"
\__’—
Now, if we want to find a substring that maximizes N, it corresponds
to finding the indices L and R (0 < L < R < N) such that

N(QSy — QS His maximized, which is actually: “find the farthest pair
of points in the projected plane”.

48



Computation in the plane

Or you could even project it to the plane z = 0. (Try to prove that this
also works!) 49



Partially Ordered Set




Partial order

Definition 14
A binary relation R on A (i.e. a subset of A x A) is said to be a partial
order if

- (Reflexivity) Forall x € A, (x,X) € R.

e ——————

- (Antisymmetry) For all x,y € A, if (x,y) € Rand (y,x) € R then
X=y. -
- (Transitivity) For all x,y,z € A if (xw) € Ig_and (v,2) € R then

(x,2) € R also.
———

Example

Let < be a relation on N defined by
<:={(x,y) e N x N: 3k € N,y = Rkx}.

50



Another example

Example

Let S = {a, b, c,d}, then consider the power set P(S) and the relation
C defined on the power set. (P(S),C) is a partially ordered set.

51



Hasse Diagrams

(a‘\,t‘a ‘l

1101

0100

Figure 1: First diagram
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Figure 2: Second diagram
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Hasse Diagrams

Rt T,

!{C)“C>

va

‘ ooo

Figure 3: Third diagram
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Figures credits: "Watchduck”, Public domain, via Wikimedia Commons.
(see https://en.wikipedia.org/wiki/Hasse_diagram)
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Total order

Definition 15
A partial order R on A is said to be total if and only if forall x,y € A,

(xy) eRor(y,x) eRr

57



Chains and antichains

Let R be a partial order on A.

Definition 16

AsetS C Aisa chain (with respect to the partial order R) if and only
if Ris a total order of S.

Definition 17

Aset S C Ais an antichain (with respect to the partial order R) if and

. \ . . .
only if forall x £ y € S, both (@ and (y,x) are not in R. (i.e. no pair
of elements in S is comparable

58



Example (divisibility)

e



Another Example

V/ vo
LIS

(&2 o Y )

}‘Q‘rw‘;

1
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An LIS Problem

Given an array A of N elements, find the length of longest increasing
subsequence.

—————

61



Another LIS Problem
@;i;;Kiw

Chef plays with the sequence of N numbers. During a single move
Chef is able to choose a non-decreasing subsequence of the
sequence and to remove it from the sequence. Hel‘p'ﬁim to remove
all the numbers in the minimal number of moves.

Problem source:
https://www.codechef.com/problems/CHRL3

iRy e i <3, a=0
LS Srallesy Chai Muur,;;’o‘o\

62
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Dilworth’s theorem

Theorem 18 (Dilworth’s theorem)

For a finite partially ordered set S with partial order < on S, the
largest antichain has the same size as the smallest chain
decomposition of S.

63



Dilworth’s theorem

Theorem 18 (Dilworth’s theorem)

For a finite partially ordered set S with partial order < on S, the
largest antichain has the same size as the smallest chain
decomposition of S.

What is a “chain decomposition”?

63



Dilworth’s theorem

Theorem 18 (Dilworth’s theorem)

For a finite partially ordered set S with partial order < on S, the
largest antichain has the same size as the smallest chain
decomposition of S.

What is a “chain decomposition”?

Definition 19

A chain decomposition D is a partition of S such that for any X € D, X
is a chain.

63



The Same Old Example

1010

0100) (0010

64



Proof (given by Galvin, 1994)

By induction, remove a maximal element a of S and assume that

S —{a} has a smallest chain decomposition P with k chains (we write
Pas P={Py,Py,..., P} where P;is a chain, i.e, a totally-ordered
subset of S) and that A is a largest antichain with size k. Then for all
ie{1,...,k}, Ag NP £ 0. (Why?)

65



Proof (given by Galvin, 1994)

By induction, remove a maximal element a of S and assume that

S —{a} has a smallest chain decomposition P with k chains (we write
Pas P={Py,Py,..., P} where P;is a chain, i.e, a totally-ordered
subset of S) and that A is a largest antichain with size k. Then for all
ie{1,...,k}, Ag NP £ 0. (Why?)

Moreover, Ag N P; has cardinality 1 (and they are all different).
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Proof (given by Galvin, 1994)

By induction, remove a maximal element a of S and assume that

S —{a} has a smallest chain decomposition P with k chains (we write
Pas P={Py,Py,..., P} where P;is a chain, i.e, a totally-ordered
subset of S) and that A is a largest antichain with size k. Then for all
ie{1,...,k}, Ag NP £ 0. (Why?)

Moreover, Ag N P; has cardinality 1 (and they are all different).

Before going to the main proof. Let us consider that proving that S
has either an antichain of size k + 1 or a chain decomposition of size
kis enough. Why?
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Proof (given by Galvin, 1994)

By induction, remove a maximal element a of S and assume that

S —{a} has a smallest chain decomposition P with k chains (we write
Pas P={Py,Py,..., P} where P;is a chain, i.e, a totally-ordered
subset of S) and that A is a largest antichain with size k. Then for all
ie{1,...,k}, Ag NP £ 0. (Why?)

Moreover, Ag N P; has cardinality 1 (and they are all different).

Before going to the main proof. Let us consider that proving that S
has either an antichain of size k + 1 or a chain decomposition of size
kis enough. Why?

Observe that S cannot have an antichain of size more than kR + 1.
(because we only add {a} to S — {a} which has the size of maximum
antichain as k) Also observe that we cannot have a chain
decomposition of size less than k. (because S — {a} already has a
smallest chain decomposition of size k)

65



Proof (cont.)

If S has an antichain of size k + 1, can the smallest chain
decomposition have size kR?

66



Proof (cont.)

If S has an antichain of size k + 1, can the smallest chain
decomposition have size kR?

The answer is no, because if there is an antichain of size k+1and a
chain decomposition of size k, then by the pigeonhole principle, two
elements of the antichain belong to the same chain, which is a
contradiction.
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Proof (cont.)

If S has an antichain of size k + 1, can the smallest chain
decomposition have size kR?

The answer is no, because if there is an antichain of size k+1and a
chain decomposition of size k, then by the pigeonhole principle, two
elements of the antichain belong to the same chain, which is a
contradiction.

Now, if S has a chain decomposition of size k, can there be an
antichain of size k +1? (Surely there is an antichain of size kin S
because Ay is already an antichain of size kin S — {a})
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Proof (cont.)

If S has an antichain of size k + 1, can the smallest chain
decomposition have size kR?

The answer is no, because if there is an antichain of size k+1and a
chain decomposition of size k, then by the pigeonhole principle, two
elements of the antichain belong to the same chain, which is a
contradiction.

Now, if S has a chain decomposition of size k, can there be an
antichain of size k +1? (Surely there is an antichain of size kin S
because Ay is already an antichain of size kin S — {a})

The same argument holds, if there is an antichain of size k + 1 then
two elements belong to the same chain (by the pigeonhole principle)
and this is a contradiction.

66



Proof (cont.)

Now, consider each chain P; € P. Take the maximal element x; from
P; such that there exists an antichain of size kin S — {a} containing
xi. (Why is this always possible?)
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Proof (cont.)

Now, consider each chain P; € P. Take the maximal element x; from
P; such that there exists an antichain of size kin S — {a} containing
xi. (Why is this always possible?)

IsA = {xq1,%s,...,Xg} @an antichain of S — {a}? Why?
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Proof (cont.)

Now if x; < a for some i e {1,...,R}.
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Proof (cont.)

Now if x; < a for some i e {1,...,R}.

Consider the chain K= {a} U{z € P;: z < x}.
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Proof (cont.)

Now if x; < a for some i e {1,...,R}.
Consider the chain K= {a} U{z € P;: z < x}.

What is the size of the smallest chain decomposition of S — K? Well,
by the induction hypothesis, it is equal to the maximum size of
antichain in S — K, which, hmm... How much is it?
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Proof (cont.)

Now if x; < a for some i e {1,...,R}.
Consider the chain K= {a} U{z € P;: z < x}.

What is the size of the smallest chain decomposition of S — K? Well,
by the induction hypothesis, it is equal to the maximum size of
antichain in S — K, which, hmm... How much is it?

Surely it is no more than k, and at least it is k — 1 (because A — {x;} is
an antichain). The question is, can it be k?
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Proof (cont.)

Now if x; < a for some i e {1,...,R}.
Consider the chain K= {a} U{z € P;: z < x}.

What is the size of the smallest chain decomposition of S — K? Well,
by the induction hypothesis, it is equal to the maximum size of
antichain in S — K, which, hmm... How much is it?

Surely it is no more than k, and at least it is k — 1 (because A — {x;} is
an antichain). The question is, can it be k?

The answer is no. Basically, S — K has all the chains P; except P;
where Kis removed from P;. If P, — K has an element y such that
(A —{x;}) u{y} is an antichain, then x; <y, which contradicts the
condition that x; is the maximal element such that there exists an
antichain of size k in S — {a} containing x;.
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Proof (cont.)

So the size of smallest chain decomposition of S — K'is k — 1, which is
equal to the maximum size of antichain in S — K. Now when we
consider S = (S — K) UK, we can think of adding the chain K to the
existing chain decomposition of S — K. Now, the size of the new chain
decomposition is k — 141 = k. Which completes the proof in this
case (where there exists i € {1,..., R} such that x; < a).
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Proof (cont.)

Now if x; A aforalli e {1,...,R}. By our assumption that a is
maximal, a £ x; forall i € {1,...,k} also. So AU {a} is an antichain
of size k4 1. This completes the proof in this case (where there is no
i€{1,...,R} such that x; < a)
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Proof (cont.)

Now if x; A aforalli e {1,...,R}. By our assumption that a is
maximal, a £ x; forall i € {1,...,k} also. So AU {a} is an antichain
of size k4 1. This completes the proof in this case (where there is no
i€{1,...,R} such that x; < a)

Hence, the two cases are now proved. |
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Proof (see also)

(I read it from https://en.wikipedia.org/wiki/Dilworth%
27s_theorem#Inductive_proof)
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Problems




Let's try

- lingling (2021-2022)
c o58_mar_c2_pern7utepermute

N - https://szkopul.edu.pl/problemset/problem/
po L _cVmDXXn2TjFOdF1rW6eazA0/site/?key=statement

- findpermutation (2021-2022)
- abc (2022-2023)
- sortingtapes (2022-2023)
(50} -—(Bifﬁcult)https://cses.fi/193/list/
- (Difficult)
https://oj.uz/problem/view/J0I18_bubblesort2
- (Difficult)
https://oj.uz/problem/view/JOI18_asceticism
- (Difficult)
[‘E(ﬁ https://codeforces.com/contest/1193/problem/C
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https://szkopul.edu.pl/problemset/problem/_cVmDXXn2TjF0dF1rW6eazA0/site/?key=statement
https://szkopul.edu.pl/problemset/problem/_cVmDXXn2TjF0dF1rW6eazA0/site/?key=statement
https://cses.fi/193/list/
https://oj.uz/problem/view/JOI18_bubblesort2
https://oj.uz/problem/view/JOI18_asceticism
https://codeforces.com/contest/1193/problem/C

Sources

n '2v~+~i e hy 12 .

- Discrete mathematics lectures provided by Francois Alouges (at
Ecole Polytechnique)

S

* Reduction of Endomorphisms lectures provided by David
Burguet (at Ecole Polytechnique) with notes provided by Javier
Fresan.

An Introduction to the Analysis of Algorithms (2nd edition) by
Robert Sedgewick and Phillipe Flajolet.

. Elementary Set Theory lectures provided by Thanatkrit Kaewtem
(at Mahidol Wittayanusorn School).
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Thank you!

And good luck with the training camp!
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