Persistent Data Structure

Nattee Niparnan

What is?

* Traditional data structure is ephemeral
* When you modify it, it change.

* The old data is lost, there is no obvious way to backtrack the edit (in most
cases)

* Persistent Data Structure is a data structure that allow us to see back
In time
* Time is identified by version number
 Partial persistent: can read back in time
* Full persistent: can read/write back in time, creating fork of versions

When to use Persistent?

* Update — query style problem
* Where query is NOT known beforehand

* E.g., interactive task

* If query is known, it is better to “sweep” though time
e E.g., sort query, update by times

 Most of the time, it is not that obvious

Example Interface

e Consider array of size n, A

* Normal array of int
e Read: int get(idx) (e.g., cout << A[x])
e Write: void set(idx,value) (e.g., A[x] =20)
 Partial Persistent Array
* Versioning: int current_version()

* Read: int get(idx, version)

e Write: int set(idx, value) //return version number

* Full persistent Array
* Write: int set(idx, value, version)
 Versioning: int previous_version(version)

Naive Implementation

* Use 2D array to store 1D Array
* The other dimension is “version”
* Full-Copy of each version

operation ver [UNEOREEREENETNECE
0

Init 0 0
Set(3,1)
Set(5,4)
Set(2,3)
Set(3,5)
Set(5,9)

v b W N R O
O O O O O o
O O O O O o
o O O O O O

0
0
3
3
3

U U R R R
o b b B O

o O O O O o

Naive Implementation

* Set = O(n)
e Get = 0(1)

e Space O(n) per operation
e For m operation, it’s O(nm)

* This approach can be done in most data structure

Today Topic

* How to make “faster” and “smaller” persistent data structure

Persistent Stack

* |dea: Pointer based (can use vector)

* Interface:
* Create new version: push, pop
* No change: top

* Each element in the stack contains a pair <data, next-to-top>
* Version = a pointer to the top

Example

» Sequence of operation
 Start with version 0 = empty stack
e Push(A) = version 1

Push(B) = version 2

Push(C) = version 3

Pop() = version 4

Push(D) = version 5

* Pop =2 version 6

* O(1) push, pop, top

* O(1) space per push, pop

Code

Data:

vector<pair<T,int>> nodes;

vector<int> tops = {-1};
int current_version = 0;

top:

T& top(int version) {
return nodes[tops[version]].first;

}

push:

int push(T value) {

tops.push _back(nodes.size()-1);
return ++current_version;

}

nodes.push_back({value, tops.size()-1 });

pop:

int pop() {
int tos = tops[current _version];

tops.push_back(nodes[tos].second);
return ++current_version;

}

Persistent Queue

* Like a stack
* Each version keep <front,back>
* Enqueue, dequeue add new pairs of <front, back>

Persistent BS Tree

 Each version has different root

* When add, create a new version of nodes from the new leaf to the
new root

e Each insert cost additional O(h) (to the original O(h)) in times where h
is the height of the tree

* Also add O(h) space

Example
Vi w2 (w3 Jva w5 [v6 [v7 v | |

add(9) After

Persistent Array

* Use tree to store array
* Internal nodes covers some part of array (in segment tree fashion)

e Update in the same way
as BST

A[0] A[1] A[2] A[3] A[4] A[5] Al6] A[7]

Implementation Summary

* Queue, Stack use pointer-based

* Use “Segtree Structure” (as in Persistent Array) if underlying data
structure is Array
* Such as Array, Fenwick Tree, Priority Queue, Open Addressing Hash
* Also Disjoint Set, Queue, Stack can be done this way
* Need additional O(log W) where W is the size of the array

* Use “Tree Structure” (as in Persistent BST) if underlying data structure
Is a Tree
* BST
* Generalized Seg Tree

Useful Link

e Link from GfG https://www.geeksforgeeks.org/persistent-data-
structures/

* Good Intro http://www.toves.org/books/persist/

* Purely Functional Data Structure
https://www.cs.cmu.edu/~rwh/theses/okasaki.pdf

https://www.geeksforgeeks.org/persistent-data-structures/
https://www.geeksforgeeks.org/persistent-data-structures/
http://www.toves.org/books/persist/
https://www.cs.cmu.edu/~rwh/theses/okasaki.pdf

Some Interesting Problem

* CodeForces Sign on Fence
http://codeforces.com/problemset/problem/484/E

e SPOJ K-th Number
* SPOJ Count on Tree

* CodeForces The Classic Problem
e https://codeforces.com/problemset/problem/464/E

http://codeforces.com/problemset/problem/484/E
https://codeforces.com/problemset/problem/464/E

