Geometry Introduction



Topic

« Two lines Intersection Test

« Point inside polygon

« Convex hull

« Line Segments Intersection Algorithm



Geometry

Components

« Scalar (S)

« Point (P)

» Free vector (V)

Allowed
operations

.S*V >V
V+V >V
‘PP >V
‘P+V > P



Examples

Vector addition

Point subtraction

Point-vector addition

u+v
7
u
P
s
o 9
p+Vv
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r=p+a-(q—p)



Euclidean Geometry

« In affine geometry, angle and distance are not defined.

« Euclidean geometry is an extension providing an additional
operation called “inner product”

« There are other types of geometry that extends affine geometry
such as projective geometry, hyperbolic geometry...



Dot product is a mapping from two vectors to a real number.

Dot product

U, vV
| Uy Vo d
u = A u-v=>uy,
u, V4 =1
Lenath Distance
u/=u-u dist(P,Q) =P - Q|
Angle
ang(u, v) = cos™'| =
ulv

Orthogonality: u and v are orthogonal when u:-v




Topic

e [ntroduction

« Point inside polygon
« Convex hull
« Line Segments Intersection Algorithm



Cross-Product-Based
Geometric Primitives

Some fundamental geometric questions:

1. Given two directed segments pop; and pop;, is Pop) clockwise from pops
with respect to their common endpoint pg?

2 GIVEH two llnE 5Egm5nt5 p]pz ﬂnd. FIP}, if we traverse p_lp'i‘ and thﬂn
P2P3, do we make a left turn at point p,?

3. Do line scgments pp; and PiPa intersect? source: 91.503 textbook Cormen et al.

pz

Ps P2
p1 § P4
Po o8

(1) (2) (3)



Cross-Product-Based
Geometric Primitives: (1)

Yy

P2

(b) ;’

Figure 33.1 (a) The cross product of vectors p, and p, is the signed area of the D
parallelogram. (b) The lightly shaded region contains vectors that are clockwise 1
from p. The darkly shaded region contains vectors that are counterclockwise

from p.

Po
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zj:xl)’z_xz)’l (1)
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Xy
py X p, =det

(P1 — Po) % (P2 — Po) = (X1 — X0)(¥2 — ¥o) — (X2 — x0)(¥1 — Yo)

Advantage: less sensitive to accumulated round-off error source: 91.503 textbook Cormen et al.




Cross-Product-Based
Geometric Primitives: (2)
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(2)

2

5

Py P,
: P Py
counterclockwise clockwise
Py Py
(a) (b)

Figure 33.2 Using the cross product to determine how consecutive line segments
Pob; and Pip; turn at point p;. We check whether the directed segment pop; is

clockwise or counterclockwise relative to the directed segment pop;. (a) If coun-
terclockwise, the points make a left turn. (b) If clockwise, they make a right turn.

source: 91.503 textbook Cormen et al.



isLeft()

// isLeft(): tests if a point is Left|On|Right of an infinite line.
// Input: three points PO, P1l, and P2
// Return: >0 for P2 left of the line through PO and P1

// =0 for P2 on the line

// <@ for P2 right of the line
int isLeft( Point PO, Point P1l, Point P2 )
{

return ( (Pl1.x - PO.x) * (P2.y - PO.y)
- (P2.x - PO.x) * (Pl1.y - PO.y) );



Segment-Segment Intersection

Finding the actual intersection point
Approach: parametric vs. slope/intercept
— parametric generalizes to more complex intersections

* e.g. segment/triangle P
- Parameterize each segment 7. L
B ° tLeg C C=d'C_,. b
......... d
h p(s)=a+sA

Intersection: values of s, t such that p(s) =q(t) : a+sA=c+iC
2 equations in unknowns s, t: 1 for x, 1 fory

source: O’'Rourke, Computational Geometry in C




Assume that a = (x1,y1) b = (x2,y2) ¢ = (x3,y3) d = (x4,y4)

(x4 —X3)(}71 R y3)—(y4 R y3)(x1 _x3)
(Vs = Y, —x) —(x, —x3)(y, — y))

S =

= (X2 —xl)(yl o }73)—()72 _yl)(xl _x3)
(¥, = ¥3)(x, =) = (X = x3)(y, = »))




Code

typedef struct point { double x; double y;} point;
typedef struct line { point pl; point p2;} line;

int check lines(line *1inel, line *1ine2, point *hitp)
{
double d = (line2->p2.y - line2->pl.y)*(1linel->p2.x-1inel->pl.x) -
(line2->p2.x - line2->pl.x)*(1linel->p2.y-linel->pl.y);

double ns = (line2->p2.x - line2->pl.x)*(1linel->pl.y-1line2->pl.y) -
(line2->p2.y - line2->pl.y)*(linel->pl.x-1line2->pl.x);
double nt = (linel->p2.x - linel->pl.x)*(linel->pl.y - line2->pl.y) -

linel->pl.y)*(linel->pl.x - line2->pl.x);

(linel->p2.y
if(d == @) return 0;

double s= ns/d;
double t = nt/d;

return (s >=0 && s <=1 & t >= 0 && t <= 1));




Intersection of 2 Line Segments

Step 1:
i p3 and p4 on opposite sides of p1p2

Bounding Box (=P X (Py=p,) < O

Test (Py-pP)X(py-p) <0 P, (Py-p)x(py-p) <0 P,
Py Py
Py Py
pﬂ p2 Pl {p,‘,_PI)xtpz_pI] >0 p
1
’ (a) (b)
4
(Py=pP)X%(py—-p) <0
Py P2 (Py-P) % (Py-p) =0 AT
P+ '
P y
? g
(3) P, (Py=pP)x(p,-p) =0 P, (py=p)x(py-p) =0 plg/_l
(c) (d) (e)
. Figur¢ 33.3 Jetermining whether line segment p3p; straddles the line containing

Step 2: Does each segment p,p,. (a) If it does straddle, then the signs of the cross products (p3 — p;) x
Segment straddle the (P2 — p1) and (ps — p1) % (p2 — p1) differ. (b) If it does not straddle, then the signs

] . . of the cross products are the same. (c¢)-(d) Boundary cases in which at least one of
line co ntalnlng the the cross products is zero and the segment straddles. (e) A boundary case in which
oth err) the segments are collinear but do not intersect. Both cross products are zero, but

they would not be computed by our algorithm because the segments fail the quick
rejection test—their bounding boxes do not intersect.

source: 91.503 textbook Cormen et al.



Topic

e [ntroduction
« Two lines Intersection Test

« Convex hull
« Line Segments Intersection Algorithm



Point Inside Polygon Test

« Given a point, determine
if it lies inside a polygon
or not




Ray Test

« Fire ray from point
« Count intersections
— Odd = inside polygon
— Even = outside polygon




Problems With Rays

« Fire ray from point
« Count intersections
— Odd = inside polygon
— Even = outside polygon

* Problems
— Ray through vertex




Problems With Rays

« Fire ray from point
« Count intersections
— Odd = inside polygon
— Even = outside polygon

* Problems
— Ray through vertex




Problems With Rays

« Fire ray from point
« Count intersections
— Odd = inside polygon
— Even = outside polygon

* Problems
— Ray through vertex
— Ray parallel to edge




Solution

« Edge Crossing Rule

— an upward edge includes its starting endpoint, and excludes its
final endpoint;

— a downward edge excludes its starting endpoint, and includes its
final endpoint;

— horizontal edges are excluded; and

— the edge-ray intersection point must be strictly right of the point
P.

« Use horizontal ray for simplicity in computation



Code

// cn_PnPoly(): crossing number test for a point in a polygon

// Input: P = a point,

// V[] = vertex points of a polygon V[n+l1l] with V[n]=V[0]
// Return: © = outside, 1 = inside

// This code is patterned after [Franklin, 2000]

int cn_PnPoly( Point P, Point* V, int n )

{

int cn = 0; // the crossing number counter

// loop through all edges of the polygon
for (int i=0; i<n; i++) { // edge from V[i] to V[i+1]
if (((V[i].y <= P.y) && (V[i+l].y > P.y)) // an upward crossing
|| ((V[i].y > P.y) && (V[i+1].y <= P.y))) { // a downward crossing
// compute the actual edge-ray intersect x-coordinate
float vt = (float)(P.y - V[i].y) / (V[i+1].y - V[i].y);
if (P.x < V[i].x + vt * (V[i+l1].x - V[i].x)) // P.x < intersect
++Ch; // a valid crossing of y=P.y right of P.x
}
}
return (cn&l); // @ if even (out), and 1 if odd (in)



A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way

« One winding = inside




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way




A Better Way

« zero winding = outside




Requirements

* QOriented edges
« Edges can be processed
in any order




Advantages

« Extends to 3D!

* Numerically stable

« Even works on models with holes:
— Odd k: inside
— Even k: outside

« No ray casting




Actual Implementation



Winding Number

Int wn_PnPoly( Point P, Point* V, int n )
{

int wn = 0; // the winding number counter

// loop through all edges of the polygon
for (int i=0; i<n; i++) { // edge from V[i] to V[i+1]

if (V[i].y <= P.y) { // start y <= P.y
if (V[i+1].y > P.y) // an upward crossing
if (isLeft( V[i], V[i+1], P) > @) // P left of edge
++wn; // have a valid up intersect
}
else { // start y > P.y (no test needed)
if (V[i+1l].y <= P.y) // a downward crossing
if (isLeft( V[i], V[i+1], P) < @) // P right of edge
--wn; // have a valid down intersect
}

}

return wn;



Topic

e [ntroduction
« Two lines Intersection Test
« Point inside polygon

« Line Segments Intersection Algorithm



Convex Hulls

g

Subset of S of the plane is convex, if for all pairs p,qin S the
line segment pq is completely contained in S.

The Convex Hull CH(S) is the smallest convex set, which
contains S.



Convex hull of a set of points in
the plane

\ Rubber band experiment

The convex hull of a set P of points is the unique convex
polygon whose vertices are points of P and which contains
all points from P.



Convexity & Convex Hulls
source: O’Rourke, Computational Geometry in C
* A convex combination of points
X1, ...y X, 1S @ SUM Of the form
O X1+...+ 04X, Where

o.20Vi and o, +---+a, =1

: . honconvex polygon
» Convex hull of a set of points is POYY

the set of all convex
combinations of points in the
set. /

source: 91.503 teXIBBER CETHTEH: G Ay e vl ) m. convex hull of a point set



Convex Hull

 Input:
— SetS ={s;,, ..., s} of n points
« Qutput:

— Find its convex hull

« Many algorithms:
— Naive — O(r?®)
— Insertion — O(n logn)
— Divide and Conquer — O(n logn)
— Gift Wrapping — O(nh), h = no of points on the hull
— Graham Scan — O(n logn)



Naive Algorithms
for Extreme Points

Algorithm: INTERIOR POINTS
for each i do
foreachj#ido
foreach k #] #ido
foreachL#k #j#£ido

then p, is nonextreme O(n%)

Algorithm: EXTREME EDGES
for each i do
foreach | #ido
foreach k #j #ido
If pis not left or on (p;, p))
then (p;, p)) is not extreme  O(n3)

source: O’Rourke, Computational Geometry in C




Algorithms: 2D Gift Wrapping

« Use one extreme edge as an anchor for
finding the next

Algorithm: GIFT WRAPPING
I, «— index of the lowest point

| «— I
repeat
foreach j # i

Compute counterclockwise angle 6 from previous hull edge
K <« index of point with smallest 6
Output (p;, pi) as a hull edge

| «— K

until i = io source: O’Rourke, Computational Geometry in C O(n2)




- - source: 91.503 textbook Cormen et al.
Gift Wrappinag

left chain ! right chain

left chain right chain

Figure 339 The operation of Jarvis’s march. The first vertex chosen is the lowest
point po. Ihe next vertex, p, has the least polar angle of any point with respect
to po. Then, p; has the least polar angle with respect to p;. The right chain goes
as high as the highest point p;. Then, the left chain is constructed by finding least
polar angles with respect to the negative x-axis.

Output Sensitivity: O(n?) run-time is actually O(nh)
where h is the number of vertices of the convex hull.



Algorithms: 3D Gift Wrappin
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Algorithms: 2D QuickHull

« Concentrate on points close ®
to hull boundary ae-

« Named for similarity to
Quicksort Ae®

Algorithm: QUICK HULL finds one of upper or lower hull
function QuickHull(a,b,S)

if S = @return()
else
c +— index of point with max distance from ab
A «points strictly right of (a,c)
B «— points strictly right of (c,b)
return QuickHull(a,c,A) + (c) + QuickHull(c,b,B) O(n?)

source: O’'Rourke, Computational Geometry in C




Algorithms: 3D QuickHull

Convex Hull Algorithms - Metscape

Convex Hull Algorithms - Netscape Convex Hull Algorithms - Metscape

Convex Hull Algorithms - Netscape onvex Hull Algorithms - Netscape

File Edit “iew Go Communicator Help

<« 2 A &4 =2

Back Fonward Reload Home Search

File Edit ‘“iew Go Communicator Help File Edit View Go Communicator Help

Back Fopward Reload Flome Search
w!v Bookmarks £ Location: [
&Instanth‘lessage w/ehhall Contact

File Edit View Go Communicator Help

<« » A I a2

File Edit Wiew Go Communicator Help

‘é: »@t \3 - E'. - e
Back Foarward Reload I-T/c?na Seaich Netscg ﬁ ”@“ \3 ﬁ e [

Back Fonard — Reload Home  Search M Back  Foward  Reload  Home  Search  Mel

E‘ Boskmarks \&anatimn'l v ‘t' Bookmarks J‘ Location: "‘thUUkma[KS \& Lucaliun.l ' w"Bokaarks \g‘ Location: L
Instant Meszage |5 WebMail S| Contact S Fo ¥ 7 i =
l'_; ﬁ\nstantMessage *wiebhd ail Contact Peopl= ﬁlnstantMessage DK gonia) ficori : &InstantMessage ‘webhail Contact Peny

Convex Hull Algorithn Convex Hull Algorith copyex Hull Algorithn Convex Hull Algorithm Convex Hull Algorithn

®

@ &
‘c'

[ L

show. [ iaimaly [~ JEIEH 7 oeteteo show. [ |Nammal [~ JER I Delete SN [ i e I Wil T~ oo
Stanl Stuplllililil Frame: IT Stoplllililil Frame: [ Start 91gp|+_1| : ililprame: W Stanl Stup|+_1| ilil Frame: IT ﬂlﬂli : iIiIiIFrame; [
30 |+ | FE [mephere | [30 =] |cuick-un | |insnhere [z0 =] [auickHun Zl{nsprere {30 7] [cuickHul =zl |nsphere 7 fz0 = foueieiu =] finsohere

) ) ] ) This applet demonstrates four algorthms (Incremen
Thiz applet demonstrates four algorithms This applet demenstrates four algorithms (Incren] This applet demonstrates four algorithms This applet demonstrates four algonthums (Theremental dimensions. There are some detailed instructions, b
dimensions. There are some detailed instructions, byl dimensions. There are some detaled mstructlonsl dimensions. There are seme detaled mnstructions, byl dimensions. There are some detailed instructions, but

(Bt

,—m ,@ == | |Hn|d the mouze buttan down and
E | Hold the moviss butten dovn and mi | == | |Hold the mous= buiton dovwn an=f [=0=| |Hold the mouse button down and m@ == |Hold the maouse button down and move the mause ta rotate the hull

CxHull Animations: http://www.cse.unsw.edu.au/~lambert/java/3d/hull.ntml




Algorithms: >= 2D

Convex Hull
boundary is
Intersection of
hyperplanes, so
worst-case

combinatorial size
(not necessarily running

time) complexity Is

in: @(nLd/ZJ)

Qhull: http://www.qghull.org/




Graham'’s Algorithm

source: O’Rourke, Computational Geometry in C

« Points sorted angularly provide
“star-shaped” starting point

* Prevent “dents” as you go via
convexity testing




Graham Scan

» Polar sort the points around a
point inside the hull

e Scan points in counter-
clockwise (CCW) order

— Discard any point that causes a
clockwise (CW) turn
 If CCW, advance

 If ICCW, discard current point
and back up



Graham Scan

GRAHAM-ScAN(Q)

1

2

00 O b AW

10
11

let po be the point in Q with the minimum y-coordinate,
or the leftmost such point in case of a tie

let (p1,p2,...,Pm) be the remaining points in Q,
sorted by polar angle in counterclockwise order around p,
(if more than point has the same angle, remove all but
the one that is farthest from p,)

top[S] < 0
PusH(py, §)
PusH(p,,S)
PusH(p,, S)
for i — 3tom
do while the angle formed by points NExT-To-Top(S),
Tor(S), and p, makes a nonleft turn
do Pop(S)
PusH(S, p;)
return S

source: 91.503 textbook Cormen et al.



Graham-Scan : (1/11)



Graham-Scan :(1/11)
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1.Calculate polar angle

2.Sorted by polar angle



Graham-Scan : (2/11)

Stack 5:\ P2
P1
Po




Graham-Scan : (3/11)

Stack 5:\ P3
P1
Po




Graham-Scan: (4/11)

Stack

-/

P4

A\ P3

P1



Graham-Scan (5/11)

Stack 5:| ps




Graham-Scan (6/11)

Stack 5:




Graham-Scan (7/11)

Stack 5:\|P3




Graham-Scan (8/11)




Graham-Scan (9/11)




Graham-Scan (10/11)




Time complexity Analysis

« Graham-Scan
— Sorting in step 2 needs O(n log n).
— Time complexity of stack operationis O(2n)
— The overall time complexity in Graham-Scan is O(n log n).

« Demo:
— http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html



Graham Scan

Py

() (b)

Figure The two basic situations in the proof of correctness of GRAHAM-
ScaN. (a) Showing that a point popped from the stack in GRAHAM-SCAN is not
a vertex of CH(Q). If point p; is popped from the stack because angle Zp.p;p;
makes a nonleft turn, then the shaded triangle Apyp; p; contains point p;. Point p;
is therefore not a vertex of CH(Q). (b) If point p; is pushed onto the stack, then
there must be a left turn at angle Zp,p;p;. Because p; follows p; in the polar-angle
ordering of points and because of how py was chosen, p; must be in the shaded
region. If the points on the stack form a convex polygon before the push, then
they must form a convex polygon afterward.

source: 91.503 textbook Cormen et al.



Graham Scan

P,

(a) (b)

Figure Adding a point in the shaded region to a convex polygon P yields
another convex polygon. The shaded region is bounded by a side of 7,5; and the
extensions of the two adjacent sides. (a) The shaded region is bounded. (b) The
shaded region is unbounded.

source: 91.503 textbook Cormen et al.



Algorithms: 2D Incremental

source: O’'Rourke, Computational Geometry in C

Add points, one at a time

— update hull for each new point
Key step becomes adding a
single point to an existing hull.

— Find 2 tangents

* Results of 2 consecutive LEFT tests
differ

|dea can be extended to 3D.

Algorithm: INCREMENTAL ALGORITHM

Let H, «ConvexHul{p, , p;, P>}

fork 3ton-1do
H, ._ConvexHull{ H_, U py }

O(n?)

can be improved to O(nign)




Algorithms: 3D Incremental
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Algorithms:
2D Divide-and-Conquer

source: O’Rourke, Computational Geometry in C

« Divide-and-Conquer in a geometric setting

* O(n) merge step is the challenge
— Find upper and lower tangents

— Lower tangent: find rightmost pt of A &
leftmost pt of B; then “walk it downwards”

 |dea can be extended to 3D.

Algorithm: DIVIDE-and-CONQUER
Sort points by x coordinate
Divide points into 2 sets A and B:
A contains left'n/2 Ipoints
B contains right, n/2points
Compute ConvexHull(A) and ConvexHull(B) recursively
Merge ConvexHull(A) and ConvexHull(B) O(nlgn)




Convex Hull - Divide & Conquer

Split set into two, compute convex hull of both, combine.



Convex Hull - Divide & Conquer

Split set into two,



Convex Hull - Divide & Conquer

Split set into two,



Convex Hull - Divide & Conquer

Split set into two,



Convex Hull — Divide & Conquer

compute convex hull of both,

N




Convex Hull — Divide & Conquer

compute convex hull of both, combine.

A




Convex Hull — Divide & Conquer

compute convex hull of both, combine.




Convex Hull — Divide & Conquer

compute convex hull of both, combine.




Convex Hull — Divide & Conquer

compute convex hull of both, combine.



Convex Hull — Divide & Conquer

compute convex hull of both, combine.



Convex Hull — Divide & Conquer

compute convex hull of both, combine.




Convex Hull - Divide & Conquer

« Merging two convex hulls.



Convex Hull - Divide & Conquer

« Merging two convex hulls: (i) Find the lower tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (i) Find the lower tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (i) Find the lower tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (i) Find the lower tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (i) Find the lower tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (i) Find the lower tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (i) Find the lower tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (i) Find the lower tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (i) Find the lower tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (ii) Find the upper tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (ii) Find the upper tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (ii) Find the upper tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (ii) Find the upper tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (ii) Find the upper tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (ii) Find the upper tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (ii) Find the upper tangent.




Convex Hull - Divide & Conquer

« Merging two convex hulls: (iii) Eliminate non-hull edges.




Algorithms:
3D Divide and Conquer
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Topic

» Introduction

 Two lines Intersection Test
« Point inside polygon

e Convex hull



Line segment intersection

 Input:
— SetS ={s,, ..., s} of n line segments, s, = (x;, Y;)

A \/

— k = All intersection points among the segments in S

/



Line segment intersection

« Worst case:
— k= n(n-1)/2 = O(n?) intersections

« Sweep line algorithm (near optimal algorithm):
— O(nlog n + K) time and O(n) space
— O(n) space



Sweep Line Algorithm

Avoid testing pairs of segments that are far apart.

Idea: imagine a vertical sweep line passes through the given

set of line segments, from left to right.

Swee
line

-_—_3—_—

—

—



Assumption on Non-degeneracy

No segment is vertical. // the sweep line always hits a segment at
// a point.

If a segment is vertical, imagine we rotate it clockwise by a tiny angle.
This means:

For each vertical segment, we will consider its lower
endpoint before upper point.



Sweep Line Status

The set of segments intersecting the sweep line.

It changes as the sweep line moves, but not continuously.

left endpoints
Updates of status happen only at event points. { right endpoints
intersections
|
|

C | ‘/

1 event points



Ordering Segments

A total order over the segments that intersect the current

position of the sweep line:
« Based on which parts of the segments we are B>Cs>D

currently interested in (Aand E not in
the ordering)

A @ ./l/ C>D
/ I O  E (B drops out of
C \ the ordering)
D>C

[ (C and D swap
their positions)

At an event point, the sequence of segments changes:

¢ Update the status.
¢ Detect the intersections.



Status Update (1)

Event point is the left endpoint of a segment.

¢ A new segment L intersecting
K ! the sweep line

|
L ‘\‘ ¢ Check if L intersects with the
N’ segment above (K) and the
"l M

segment below (M).

|
| ¢ Intersection(s) are new event
LN new event points.
: point

K M,N K L MN



Status Update (2)

Event point is an intersection.

¢ The two intersecting segments
I (L and M) change order.

[ ‘\‘ ¢ Check intersection with new
neighbors (M with O and L with N).
o M |

¢ Intersection(s) are new event points.

OLLMN| OMLN



Status Update (3)

Event point is a lower endpoint of a segment.

¢ The two neighbors (O and L)
I become adjacent.

L ‘\l\‘ ¢ Check if they (O and L) intersect.
F'R’

¢ Intersection is new event point.

O, ML N O, L N



Data Structure for Event Queue

Ordering of event points:

3% by x-coordinates

S by y-coordinates in case of a tie in x-coordinates.

Supports the following operations on a segment s.

e fetching the next event /I O(log m)
e inserting an event /I O(log m)

Every event point p is stored with all segments starting at p.

Data structure: balanced binary search tree (e.g., red-black tree).
m = #event points in the queue



Data Structure for Sweep-line
Status

Describes the relationships among the segments intersected
by the sweep line.

<~ Use a balanced binary search tree T to support the following
operations on a segment s.

Insert(7, s)
Delete(T, s)
Above(T, s) // segment immediately above s
Below(T, s) // segmentimmediately below s

e.g, Red-black trees, splay trees (key comparisons replaced
by cross-product comparisons).

O(log n) for each operation.

<4~



An Example

N
o
<™.
S

I L O

¢ The bottom-up order of the segments correspond to the left-to-right
order of the leaves in the tree T.

¢ Each internal node stores the segment from the rightmost leaf in its
left subtree.



Line segment intersection

Input: n line segments
Output: all intersection points



Sweeping...




Let’'s trace...
Intersect:

aA

Event:abcCBdeADE



Let’'s trace...
Intersect:

aA

Event: bcCBdeADE



Key: two segments intersect, they
must be adjacent in the intersection
list at certain moment.



Let’'s trace...
Intersect:

bB
aA

Event: b c CBdeADE



Let’'s trace ...
Intersect:

bB
aA

Event:cab CBdeADE



Let’'s trace ...
Intersect:

bB
cC
aA

Event: ¢ CBdeADE



Let’'s trace ...
Intersect:

bB
cC
aA

Event: CBdeADE



Let’'s trace ...
Intersect:

cC
bB
aA

Event: CBdeADE



Let’'s trace ...
Intersect:

cC
bB
aA

Event: CBdeADE



Let’s trace ...

Intersect:
cC
aA
bB

Event: ac CBdeADE



Let’'s trace ...
Intersect:

aA
cC
bB

Event: CBdeADE



Let’'s trace ...
Intersect:

aA
bB

Event: BdeADE



Let’'s trace ...
Intersect:

aA

Event:de AD E

D



Let’'s trace ...
Intersect:

aA
dD

Event:e AD E

D



Let’'s trace ...
Intersect:

ek
aA
dD

Event:e ae AD E



Let’'s trace ...
Intersect:

ek
aA
dD

Event: ADE



Let’'s trace ...
Intersect:

aA
ek
dD

Event: A DE



Let’'s trace ...
Intersect:

aA
ek
dD

Event: A DE



Let’'s trace ...
Intersect:

ek
dD

Event: DE



Let’'s trace ...
Intersect:

dD
ek

Event: D E



Let’'s trace ...
Intersect:

ek

Event: E



The Algorithm

FindIntersections(S)
Input: a set S of line segments
Ouput: all intersection points and for each intersection the

segment containing it.
1. Q<< /linitialize an empty event queue
2. Insert the segment endpoints into Q// store with every left endpoint

// the corresponding segments
T <@ // initialize an empty status structure
while Q+# O
do extract the next event point p
Q< Q-{p}
HandleEventPoint(p)

NOo O AW



Handling Event Points

Status updates (1) — (3) presented earlier.

Degeneracy: several segments are involved in one event point (tricky).

G E||D|] | A

% C /CD\ A
(a) Delete D, E, A, C
(b) Insert B, A, C G P\




