Orthogonal Range Search
Problem

The Problem

salary
®
°
® ® G. Ometer
. born: Aug 19, 1954
4000 p------iia salary: $3,500
[I] ¢ ®)
) # °®
® ®]
3000 0ol
L . ‘
[] @ i []
X 1 ®
I 1 L
* ‘
. 1 []
; ‘ date of birth
19,500,000 19,559,999

4,000

3,000

v |
T [
I |
| geedee o — L
i P -/I
f : s
Foemae - :
19,500,000 19,559,900

The Problem : Formalizes

* |nput
— A set P of n-dimention points {x, = (a,,a,,...,a,)}
— A “range” query a conjunction of
* min; <= a; <= max,

* min, <= a, <= mMax,

* min, <= a,A <= max,
* QOutput
— All points in P satisfying the condition

Orthogonal

* Constraints are parallel to the axis

Nature of the Problem

 The set P is seldom updated
 There will be several queries

1-D Version

e Store data in an balanced tree
e Leaf node contains data
* |nternal node contains max of left subtree

— W = largest data not exceeding the lower bound
— W' =smallest data not less than the upper bound

1-D Version

* Report everything between uand u’
— Might include p and

The Algorithm

* Find the “split node”

— Split node = node such that pand p’ are on
different subtree

root(T)

the selected subtrees

Finding Split node

FINDSPLITNODE(T , x.x")
Input. A tree T and two values x and x” with x < x’.
Output. The node v where the paths to x and x’ split, or the leaf where both paths end.
v «— root(7T)
while v is not a leaf and (X’ < x, orx > xy)
doif X' < xy
then v — le(v)

else v — re(v)
return v

fed I —

> ok

Report the Search

* For the left subtree containing

— The result is the leaves of right subtree of the
node that p is on the left subtree

* For the right subtree containing W’

— The result is the leaves of left subtree of the node
that i’ is on the right subtree

The Full Algorithm

Algorithm IDRANGEQUERY(T, [x: x])
Input. A binary search tree T and a range [x : x'].
Output. All points stored in T that lie in the range.
I. Vepiit —FINDSPLITNODE(T, x,x’)
2. if Vg is a leaf
3 then Check if the point stored at Vg3 must be reported.
else (s Follow the path to x and report the points in subtrees right of the path.)
V— 'Iﬂ'(-vsplitj
while v is not a leaf
doif x <x,
then REPORTSUBTREE(rc(V))
v —lc(v)
else v« re(v)
Check if the point stored at the leaf v must be reported.
Similarly, follow the path to x’, report the points in subtrees left of the path, and
check if the point stored at the leaf where the path ends must be reported.

el I A Bl

o = 2

Analysis

* The space requirement is O(n)

— Because it is a balanced tree
* The time for building the tree is O(n log n)
* Reporting

— O(log n + K)

 Where K is the number of points satisfying the
conditions

Generalizes to 2-dimension

* The KD-Tree
— Split the tree by half

* Alternately switch between x coord and y coord
— Root splits the y coord
— 15t |level splits the x coord
— 2" Jevel splits the y coord

— 3" |evel split the x coord d ®
Plefi Fright
i ° °
Assume that all points o
don’t have same x- °

coord or y-coord!!!!

(s

Ps

2

P3

2D kd-Tree

P1o

l3
P8

Pa

2D kd-Tree

* For vertical split line

— Point on the line is stored in the left subtree

* For horizontal split line
— Point on the line is stored in the bottom subtree

Building the kd-Tree

Algorithm BUILDKDTREE(P. depth)
Input. A set of points P and the current depth depth.
Output. The root of a kd-tree storing P.
if P contains only one point
2 then return a leaf storing this point
3. else if depth is even

4, then Split P into two subsets with a vertical line ¢ through the median x-coordinate
of the points in P. Let P, be the set of points to the left of ¢ or on ¢, and let
P, be the set of points to the right of /.

5. else Split P into two subsets with a horizontal line ¢ through the median y-
coordinate of the points in P. Let P; be the set of points below ¢ or on 7,
and let P, be the set of points above /.

6. Vieft — BUILDKDTREE(P;.depth+ 1)

7. Vright <— BUILDKDTREE(Py, depth+ 1)

3. Create a node v storing £, make Vieq the left child of v, and make vygp, the right

child of v.
0, return v

Choosing the Median

* Since the left subtree also contains the points
lying on the split line

* The median should be the floor(n/2)t" smallest
member

— Try the case of 3 points

Analysis

 How to find the median?
— Can we find the median in O(N)?
* Yes, but quite tricky
* |tis better to take P as two sorted list
— First list sorted by x
— The second list sorted by y
e Resulting in O(n log n) build time

Searching in kd-Tree

e Each internal vertex represent a rectangular
region
— Might be unbounded

) |q_]\|
£y °® /_
™ L)
o (f 2/\1\
| |

Searching in kd-Tree

* Traverse the tree
— Visit only the node that intersect with the query

— At leaf, check whether the point is contained in
the query

The Algorithm

Algorithm SEARCHKDTREE(V,R)
Input. The root of (a subtree of) a kd-tree, and a range R.
Output. All points at leaves below v that lie in the range.
I. ifvisaleaf
2 then Report the point stored at v if it lies in R.
3. else if region(lc(v)) is fully contained in R
’ then REPORTSUBTREE(lc(V))
else if region(lc(v)) intersects R
then SEARCHKDTREE(lc(V).R)
if region(rc(v)) is fully contained in R
then REPORTSUBTREE(rc(V))
else if region(rc(v)) intersects R
0. then SEARCHKDTREE(rc(V).R)

=

I~ e AN

Region of an internal vertex

 We can do brute force
— Pre-process
— Not quite necessary

* We can compute on the go

— region(lc(v)) = region(v) M I(v)'et
 Where I(v) is the splitting line of v
e |[(v)'e'tis the left halfplane including I(v)

Analysis

* Searching takes O(n°~ + K)
— How?
— Count the number of internal vertex intersected
by the region

* We actually count the number of node intersected by a
vertical line (an upper bound)

e Let Q(n) be the number of

o(1), ifn=1,

intersected region
Qn) = {2+2Q(n/4), ifn>1.

* Q(n) solves to O(n°~>)

Range Tree

Can we do better than kd-Tree?

Range Tree

* Having O(log?n + K) search
time
* Theidea
— Let the P be the set of points

— First, search P for points
satisfying the x coordinate
constrain

 We won’t bother with y coord
yet
e Let the result be P’

— Then, search P’ for points
satisfying the y coordinate

The canonical subset

* A set of leaves of a specific subtree

Range Tree

* For each vertex v

— A canonical subset of a subtree rooted at v is
stored in “another” range tree
* Called “associated tree”

) /AN T T
binary search tree on /i \

x-coordinates /-/ LN '

binary search tree
on y-coordinates

Building the Tree

Algorithm BUILD2DRANGETREE(P)

Input. A set P of points in the plane.

Output. The root of a 2-dimensional range tree.

. Construct the associated structure: Build a binary search tree Tygoc On the set P, of y-
coordinates of the points in P. Store at the leaves of T,5s0c DOt just the _\.--coordinate'of the
points in P, but the points themselves.

2. if P contains only one point
3. then Create a leaf v storing this point, and make T,4c the associated structure of v.
4, else Split P into two subsets; one subset Heqq contains the points with x-coordinate less

than or equal to x4, the median x-coordinate, and the other subset Py contains
the points with x-coordinate larger than x;q.

5. Vieft +— BUILD2DRANGETREE(Pefi)
6. Viight < BUILD2DRANGETREE(Pyight)
1. Create a node v storing xpy;q. make Vieg the left child of v. make Vvyjope the right

child of v, and make Tass0c the associated structure of v.
3. return v

Analysis

* The space requirement of the Range tree is
— O(n log n)

Searching the Range Tree

Algorithm 2DRANGEQUERY (T, [x: X'] x [y : ¥'])

Input. A 2-dimensional range tree T and a range [v : x] x [y 1 V/].
Output. All points in 7 that lie in the range.

I. Veplit ——FINDSPLITNODE(T x.x")

2. if vy is a leaf

3 then Check if the point stored at vy must be reported.

else (x Follow the path to x and call IDRANGEQUERY on the subtrees right of the
path. *)
3. V= 'FC(VsplitJ
6. while v is not a leaf
7. do if x < x,,
8. then | DRANGEQUERY (Tassoc(re(V)). [y : V])
9. v —lc(v)
10. else v —rc(v)
I1. Check if the point stored at v must be reported.
12. Similarly, follow the path from re(vspm'} to x’, call IDRANGEQUERY with the

range [y : y'] on the associated structures of subtrees left of the path, and check if
the point stored at the leaf where the path ends must be reported.

Analysis

e For each node in the main tree
— We spend O(log n + K) to search the T,

SSOC
— There are 2 * log n such node

* One for the left subtree of the split node

e One for the right subtree of the split node

— Hence, it is O(log?n + K)

Generalizes to Higher Dimention

* Simple

Fixing the unique X,y assumption

Define new ordering scheme
Composite Number Space

(alb) < (d'|b") & a<dor(a=d andb < b).

Change from p = (x,y) to
—p=((x]y), (ylx))

Change the query as well

— [x:x’] * [y:y’] into

— [(x]-22):(x"| +o=)] * [(y]-20):(y’ [+e°)]

