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The Problem



The Problem : Formalizes

• Input

– A set P of n-dimention points {xi = (a1,a2,…,an)}

– A “range” query a conjunction of 

• min1 <= a1 <= max1

• min2 <= a2 <= max2

• …

• minn <= an <= maxn

• Output

– All points in P satisfying the condition



Orthogonal

• Constraints are parallel to the axis



Nature of the Problem

• The set P is seldom updated

• There will be several queries



1-D Version

• Store data in an balanced tree

• Leaf node contains data

• Internal node contains max of left subtree

– μ = largest data not exceeding the lower bound

– μ' = smallest data not less than the upper bound



1-D Version

• Report everything between μ and μ‘

– Might include μ and μ‘



The Algorithm

• Find the “split node”

– Split node = node such that μ and μ’ are on 
different subtree



Finding Split node



Report the Search

• For the left subtree containing μ

– The result is the leaves of right subtree of the 

node that μ is on the left subtree

• For the right subtree containing μ’

– The result is the leaves of left subtree of the node 
that μ’ is on the right subtree



The Full Algorithm



Analysis

• The space requirement is O(n)

– Because it is a balanced tree

• The time for building the tree is O(n log n)

• Reporting

– O(log n + K)

• Where K is the number of points satisfying the 
conditions



Generalizes to 2-dimension

• The KD-Tree

– Split the tree by half

• Alternately switch between x coord and y coord

– Root splits the y coord

– 1st level splits the x coord

– 2nd level splits the y coord

– 3rd level split the x coord

Assume that all points 

don’t have same x-
coord or y-coord!!!!



2D kd-Tree



2D kd-Tree

• For vertical split line

– Point on the line is stored in the left subtree

• For horizontal split line

– Point on the line is stored in the bottom subtree



Building the kd-Tree



Choosing the Median

• Since the left subtree also contains the points 

lying on the split line

• The median should be the floor(n/2)th smallest 

member

– Try the case of 3 points



Analysis

• How to find the median?

– Can we find the median in O( N )?

• Yes, but quite tricky 

• It is better to take P as two sorted list 

– First list sorted by x

– The second list sorted by y

• Resulting in O(n log n) build time



Searching in kd-Tree

• Each internal vertex represent a rectangular 

region

– Might be unbounded



Searching in kd-Tree

• Traverse the tree

– Visit only the node that intersect with the query

– At leaf, check whether the point is contained in 
the query



The Algorithm



Region of an internal vertex

• We can do brute force

– Pre-process

– Not quite necessary 

• We can compute on the go

– region(lc(v)) = region(v)  ∩ l(v)left

• Where l(v) is the splitting line of v

• l(v)left is the left halfplane including l(v)



Analysis

• Searching takes O(n0.5 + K)

– How?

– Count the number of internal vertex intersected 

by the region

• We actually count the number of node intersected by a 

vertical line (an upper bound)

• Let Q(n) be the number of

intersected region

• Q(n) solves to O(n0.5)



Range Tree

Can we do better than kd-Tree?



Range Tree

• Having O(log2n + K) search 
time

• The idea

– Let the P be the set of points

– First, search P for points 
satisfying the x coordinate 
constrain

• We won’t bother with y coord
yet

• Let the result be P’

– Then, search P’ for points 
satisfying the y coordinate



The canonical subset

• A set of leaves of a specific subtree



Range Tree

• For each vertex v

– A canonical subset of a subtree rooted at v is 

stored in “another” range tree

• Called “associated tree”



Building the Tree



Analysis

• The space requirement of the Range tree is

– O(n log n)



Searching the Range Tree



Analysis

• For each node in the main tree

– We spend O(log n + K) to search the Tassoc

– There are 2 * log n such node 

• One for the left subtree of the split node

• One for the right subtree of the split node

– Hence, it is O(log2n + K)



Generalizes to Higher Dimention

• Simple



Fixing the unique x,y assumption

• Define new ordering scheme

• Composite Number Space

• Change from p = (x,y) to

– p = ( (x|y) , (y|x) )

• Change the query as well

– [x:x’] * [y:y’] into

– [(x|-∞):(x’| +∞)] * [(y|-∞):(y’|+∞)]


