
Geometry Introduction

Topic

• Introduction

• Two lines Intersection Test

• Point inside polygon

• Convex hull

• Line Segments Intersection Algorithm

Geometry

Components

• Scalar (S)

• Point (P)

• Free vector (V)

Allowed
operations

• S * V � V

• V + V � V

• P – P � V

• P + V � P

Examples

Vector addition

u
v

u+v

Point subtraction

p

q

Point-vector addition

p-q

p

v

p+v

p

q

จุดใดๆบนเสน้ตรงที�ลากผา่นจุด p และ q สามารถสร้างไดจ้าก
affine combination:

()α= + ⋅ −r p q p

α = 0.5

α = 1.25

Euclidean Geometry

• In affine geometry, angle and distance are not defined.

• Euclidean geometry is an extension providing an additional
operation called “inner product”

• There are other types of geometry that extends affine geometry
such as projective geometry, hyperbolic geometry…

Dot product is a mapping from two vectors to a real number.

Dot product





















=





















=

dd
v

v

v

u

u

u

MM

2

1

2

1

, vu ∑
=

=⋅

d

1i

vu
ii
vu

Length

uuu ⋅=

Distance

QPQP −=),dist(

Angle













 ⋅
=

−

vu

vu
vu 1cos),ang(

Orthogonality: u and v are orthogonal when 0vu =⋅

Topic

• Introduction

• Two lines Intersection Test

• Point inside polygon

• Convex hull

• Line Segments Intersection Algorithm

Cross-Product-Based
Geometric Primitives

source: 91.503 textbook Cormen et al.

p0

p2

p1

(1)

p1

p3

p2

(2)

p2

p1

p3

p4

(3)

Some fundamental geometric questions:

Cross-Product-Based
Geometric Primitives: (1)

source: 91.503 textbook Cormen et al.Advantage: less sensitive to accumulated round-off error

p0

p2

p1

(1)

33.1

1221

21

21

21 det yxyx
yy

xx
pp −=








=×

Cross-Product-Based
Geometric Primitives: (2)

source: 91.503 textbook Cormen et al.

p0

p2

p1

(2)

33.2

isLeft()

// isLeft(): tests if a point is Left|On|Right of an infinite line.
// Input: three points P0, P1, and P2
// Return: >0 for P2 left of the line through P0 and P1
// =0 for P2 on the line
// <0 for P2 right of the line
int isLeft(Point P0, Point P1, Point P2)
{

return ((P1.x - P0.x) * (P2.y - P0.y)
- (P2.x - P0.x) * (P1.y - P0.y));

}

Segment-Segment Intersection

• Finding the actual intersection point
• Approach: parametric vs. slope/intercept

– parametric generalizes to more complex intersections
• e.g. segment/triangle

• Parameterize each segment

Intersection: values of s, t such that p(s) =q(t) : a+sA=c+tC

a

b

c

d

LabLcd

a

b

c

d

LabLcd

A=b-a

p(s)=a+sA

q(t)=c+tC

C=d-c

source: O’Rourke, Computational Geometry in C

2 equations in unknowns s, t : 1 for x, 1 for y

Assume that a = (x1,y1) b = (x2,y2) c = (x3,y3) d = (x4,y4)

))(())((

))(())((

12341234

31343134

yyxxxxyy

xxyyyyxx
s

−−−−−

−−−−−
=

))(())((

))(())((

12341234

31123112

yyxxxxyy

xxyyyyxx
t

−−−−−

−−−−−
=

Code

typedef struct point { double x; double y;} point;
typedef struct line { point p1; point p2;} line;

int check_lines(line *line1, line *line2, point *hitp)
{

double d = (line2->p2.y - line2->p1.y)*(line1->p2.x-line1->p1.x) -
(line2->p2.x - line2->p1.x)*(line1->p2.y-line1->p1.y);

double ns = (line2->p2.x - line2->p1.x)*(line1->p1.y-line2->p1.y) -
(line2->p2.y - line2->p1.y)*(line1->p1.x-line2->p1.x);

double nt = (line1->p2.x - line1->p1.x)*(line1->p1.y - line2->p1.y) -
(line1->p2.y - line1->p1.y)*(line1->p1.x - line2->p1.x);

if(d == 0) return 0;

double s= ns/d;
double t = nt/d;

return (s >=0 && s <= 1 && t >= 0 && t <= 1));
}

Intersection of 2 Line Segments

source: 91.503 textbook Cormen et al.

p2

p1

p3

p4

(3)

Step 1:

Bounding Box

Test

Step 2: Does each

segment straddle the

line containing the

other?

33.3

p3 and p4 on opposite sides of p1p2

Topic

• Introduction

• Two lines Intersection Test

• Point inside polygon

• Convex hull

• Line Segments Intersection Algorithm

Point Inside Polygon Test

• Given a point, determine

if it lies inside a polygon

or not

Ray Test

• Fire ray from point

• Count intersections

– Odd = inside polygon

– Even = outside polygon

Problems With Rays

• Fire ray from point

• Count intersections

– Odd = inside polygon

– Even = outside polygon

• Problems

– Ray through vertex

Problems With Rays

• Fire ray from point

• Count intersections

– Odd = inside polygon

– Even = outside polygon

• Problems

– Ray through vertex

Problems With Rays

• Fire ray from point

• Count intersections

– Odd = inside polygon

– Even = outside polygon

• Problems

– Ray through vertex

– Ray parallel to edge

Solution

• Edge Crossing Rule

– an upward edge includes its starting endpoint, and excludes its
final endpoint;

– a downward edge excludes its starting endpoint, and includes its
final endpoint;

– horizontal edges are excluded; and

– the edge-ray intersection point must be strictly right of the point
P.

• Use horizontal ray for simplicity in computation

Code
// cn_PnPoly(): crossing number test for a point in a polygon
// Input: P = a point,
// V[] = vertex points of a polygon V[n+1] with V[n]=V[0]
// Return: 0 = outside, 1 = inside
// This code is patterned after [Franklin, 2000]
int cn_PnPoly(Point P, Point* V, int n)
{

int cn = 0; // the crossing number counter

// loop through all edges of the polygon
for (int i=0; i<n; i++) { // edge from V[i] to V[i+1]

if (((V[i].y <= P.y) && (V[i+1].y > P.y)) // an upward crossing
|| ((V[i].y > P.y) && (V[i+1].y <= P.y))) { // a downward crossing

// compute the actual edge-ray intersect x-coordinate
float vt = (float)(P.y - V[i].y) / (V[i+1].y - V[i].y);
if (P.x < V[i].x + vt * (V[i+1].x - V[i].x)) // P.x < intersect

++cn; // a valid crossing of y=P.y right of P.x
}

}
return (cn&1); // 0 if even (out), and 1 if odd (in)

}

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

• One winding = inside

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

A Better Way

• zero winding = outside

Requirements

• Oriented edges

• Edges can be processed

in any order

Advantages

• Extends to 3D!

• Numerically stable

• Even works on models with holes:

– Odd k: inside

– Even k: outside

• No ray casting

Actual Implementation

Winding Number

Int wn_PnPoly(Point P, Point* V, int n)
{

int wn = 0; // the winding number counter

// loop through all edges of the polygon
for (int i=0; i<n; i++) { // edge from V[i] to V[i+1]

if (V[i].y <= P.y) { // start y <= P.y
if (V[i+1].y > P.y) // an upward crossing

if (isLeft(V[i], V[i+1], P) > 0) // P left of edge
++wn; // have a valid up intersect

}
else { // start y > P.y (no test needed)

if (V[i+1].y <= P.y) // a downward crossing
if (isLeft(V[i], V[i+1], P) < 0) // P right of edge

--wn; // have a valid down intersect
}

}
return wn;

}

Topic

• Introduction

• Two lines Intersection Test

• Point inside polygon

• Convex hull

• Line Segments Intersection Algorithm

Convex Hulls

Subset of S of the plane is convex, if for all pairs p,q in S the
line segment pq is completely contained in S.

The Convex Hull CH(S) is the smallest convex set, which
contains S.

p

q

pq

p

q

pq

Convex hull of a set of points in
the plane

Rubber band experiment

The convex hull of a set P of points is the unique convex
polygon whose vertices are points of P and which contains
all points from P.

•

•

•

•

•
•

•

•

•

Convexity & Convex Hulls

• A convex combination of points

x1, ..., xk is a sum of the form

α1x1+...+ αkxk where

• Convex hull of a set of points is

the set of all convex

combinations of points in the

set.

nonconvex polygon

convex hull of a point set

10 1 =++∀≥ ki andi ααα L

source: O’Rourke, Computational Geometry in C

source: 91.503 textbook Cormen et al.

Convex Hull

• Input:

– Set S = {s1, …, sn} of n points

• Output:

– Find its convex hull

• Many algorithms:

– Naïve – O(n3)

– Insertion – O(n logn)

– Divide and Conquer – O(n logn)

– Gift Wrapping – O(nh), h = no of points on the hull

– Graham Scan – O(n logn)

Naive Algorithms
for Extreme Points

Algorithm: INTERIOR POINTS

for each i do

for each j = i do
for each k = j = i do

for each L = k = j = i do
if pL in triangle(pi, pj, pk)

then pL is nonextreme O(n4)

Algorithm: EXTREME EDGES

for each i do

for each j = i do
for each k = j = i do

if pk is not left or on (pi, pj)
then (pi , pj) is not extreme O(n3)

source: O’Rourke, Computational Geometry in C

Algorithms: 2D Gift Wrapping

• Use one extreme edge as an anchor for
finding the next

θ

O(n2)

Algorithm: GIFT WRAPPING

i0 index of the lowest point

i i0
repeat

for each j = i
Compute counterclockwise angle θ from previous hull edge

k index of point with smallest θ
Output (pi , pk) as a hull edge
i k

until i = i0 source: O’Rourke, Computational Geometry in C

Gift Wrapping
source: 91.503 textbook Cormen et al.

33.9

Output Sensitivity: O(n2) run-time is actually O(nh)
where h is the number of vertices of the convex hull.

Algorithms: 3D Gift Wrapping

CxHull Animations: http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

O(n2) time

[output sensitive: O(nF) for F faces on hull]

Algorithms: 2D QuickHull

• Concentrate on points close
to hull boundary

• Named for similarity to
Quicksort

a

b

O(n2)

Algorithm: QUICK HULL

function QuickHull(a,b,S)

if S = 0 return()
else

c index of point with max distance from ab
A points strictly right of (a,c)
B points strictly right of (c,b)
return QuickHull(a,c,A) + (c) + QuickHull(c,b,B)

source: O’Rourke, Computational Geometry in C

finds one of upper or lower hull

c

A

Algorithms: 3D QuickHull

CxHull Animations: http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

Algorithms: >= 2D

Qhull: http://www.qhull.org/

Convex Hull

boundary is

intersection of

hyperplanes, so

worst-case

combinatorial size
(not necessarily running

time) complexity is

in:  )(
2/d

nΘ

Graham’s Algorithm

• Points sorted angularly provide
“star-shaped” starting point

• Prevent “dents” as you go via
convexity testing θ

source: O’Rourke, Computational Geometry in C

p0

Graham Scan

• Polar sort the points around a

point inside the hull

• Scan points in counter-

clockwise (CCW) order

– Discard any point that causes a
clockwise (CW) turn

• If CCW, advance

• If !CCW, discard current point
and back up

Graham Scan

source: 91.503 textbook Cormen et al.

Graham-Scan : (1/11)

p1

p0

p3p4

p2

p5

p6p7

p8

p9

p10

p11

p12

Graham-Scan :(1/11)

p1

p0

p3p4

p2

p5

p6p7

p8

p9

p10

p11

p12

1.Calculate polar angle

2.Sorted by polar angle

Graham-Scan : (2/11)

p2
p1
p0

Stack S:

p1

p0

p3p4

p2

p5

p6p7

p8

p9

p10

p11

p12

Graham-Scan : (3/11)

Stack S:

p1

p0

p3p4

p2

p5

p6p7

p8

p9

p10

p11

p12

p3
p1
p0

Graham-Scan : (4/11)

p1

p0

p3p4

p2

p5

p6p7

p8

p9

p10

p11

p12

p4
p3
p1
p0

Stack S:

Graham-Scan (5/11)

p1

p0

p3
p4

p2

p5

p6p7

p8

p9

p10

p11

p12

p5
p3
p1
p0

Stack S:

Graham-Scan (6/11)

p1

p0

p3
p4

p2

p5

p6p7

p8

p9

p10

p11

p12

p8
p7
p6
p5
p3
p1
p0

Stack S:

Graham-Scan (7/11)

p1

p0

p3
p4

p2

p5

p6

p7

p8

p9

p10

p11

p12

p9
p6
p5
p3
p1
p0

Stack S:

Graham-Scan (8/11)

p1

p0

p3
p4

p2

p5
p6p7

p8

p9

p10

p11

p12

p10
p3
p1
p0

Stack S:

Graham-Scan (9/11)

p1

p0

p3
p4

p2

p5
p6p7

p8

p9

p10

p11

p12

p11
p10
p3
p1
p0

Stack S:

Graham-Scan (10/11)

p1

p0

p3
p4

p2

p5
p6p7

p8

p9

p10

p11
p12

p12
p10
p3
p1
p0

Stack S:

Time complexity Analysis

• Graham-Scan
– Sorting in step 2 needs O(n log n).

– Time complexity of stack operation is O(2n)

– The overall time complexity in Graham-Scan is O(n log n).

• Demo:

– http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

Graham Scan

source: 91.503 textbook Cormen et al.

Graham Scan

source: 91.503 textbook Cormen et al.

Algorithms: 2D Incremental

• Add points, one at a time
– update hull for each new point

• Key step becomes adding a
single point to an existing hull.
– Find 2 tangents

• Results of 2 consecutive LEFT tests
differ

• Idea can be extended to 3D.

O(n2)

Algorithm: INCREMENTAL ALGORITHM

Let H2 ConvexHull{p0 , p1 , p2 }

for k 3 to n - 1 do
Hk ConvexHull{ Hk-1 U pk }

can be improved to O(nlgn)

source: O’Rourke, Computational Geometry in C

Algorithms: 3D Incremental

CxHull Animations: http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

O(n2) time

Algorithms:
2D Divide-and-Conquer

• Divide-and-Conquer in a geometric setting

• O(n) merge step is the challenge
– Find upper and lower tangents

– Lower tangent: find rightmost pt of A &
leftmost pt of B; then “walk it downwards”

• Idea can be extended to 3D.

Algorithm: DIVIDE-and-CONQUER

Sort points by x coordinate

Divide points into 2 sets A and B:

A contains left n/2 points

B contains right n/2 points

Compute ConvexHull(A) and ConvexHull(B) recursively

Merge ConvexHull(A) and ConvexHull(B) O(nlgn)

A
B

source: O’Rourke, Computational Geometry in C

Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.

Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.

Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.

Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.

Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.

Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.

Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.

Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.

Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.

Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.

Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.

Convex Hull – Divide & Conquer
• Merging two convex hulls.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (i) Find the lower tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (i) Find the lower tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (i) Find the lower tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (i) Find the lower tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (i) Find the lower tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (i) Find the lower tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (i) Find the lower tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (i) Find the lower tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (i) Find the lower tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (ii) Find the upper tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (ii) Find the upper tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (ii) Find the upper tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (ii) Find the upper tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (ii) Find the upper tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (ii) Find the upper tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (ii) Find the upper tangent.

Convex Hull – Divide & Conquer
• Merging two convex hulls: (iii) Eliminate non-hull edges.

Algorithms:
3D Divide and Conquer

CxHull Animations: http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

O(n log n) time !

Topic

• Introduction

• Two lines Intersection Test

• Point inside polygon

• Convex hull

• Line Segments Intersection Algorithm

Line segment intersection

• Input:

– Set S = {s1, …, sn} of n line segments, si = (xi, yi)

• Output:

– k = All intersection points among the segments in S

Line segment intersection

• Worst case:

– k = n(n –1)/2 = O(n2) intersections

• Sweep line algorithm (near optimal algorithm):

– O(n log n + k) time and O(n) space

– O(n) space

Sweep Line Algorithm

Avoid testing pairs of segments that are far apart.

Idea: imagine a vertical sweep line passes through the given

set of line segments, from left to right.

Sweep
line

Assumption on Non-degeneracy

No segment is vertical. // the sweep line always hits a segment at
// a point.

If a segment is vertical, imagine we rotate it clockwise by a tiny angle.

This means:

For each vertical segment, we will consider its lower
endpoint before upper point.

Sweep Line Status

The set of segments intersecting the sweep line.

It changes as the sweep line moves, but not continuously.

Updates of status happen only at event points.
left endpoints

right endpoints

intersections

event points

A
G

C

T

Ordering Segments

A total order over the segments that intersect the current

position of the sweep line:
• Based on which parts of the segments we are

currently interested in

A

B

C

D

E

B > C > D

(A and E not in

the ordering)

C > D

(B drops out of

the ordering)

At an event point, the sequence of segments changes:

♦ Update the status.

♦ Detect the intersections.

D > C

(C and D swap

their positions)

Status Update (1)

♦A new segment L intersecting

the sweep line

L

M

K

♦ Check if L intersects with the

segment above (K) and the

segment below (M).

new event

point

♦ Intersection(s) are new event

points.

Event point is the left endpoint of a segment.

N

K, M, N K, L, M, N

O

Status Update (2)

♦ The two intersecting segments

(L and M) change order.

L

M

K

♦ Check intersection with new

neighbors (M with O and L with N).

♦ Intersection(s) are new event points.

Event point is an intersection.

N

O

O, L, M, N O, M, L, N

Status Update (3)

♦ The two neighbors (O and L)

become adjacent.

L

M

K

♦ Check if they (O and L) intersect.

♦ Intersection is new event point.

Event point is a lower endpoint of a segment.

N

O, M, L, N O, L, N

O

Data Structure for Event Queue

Data structure: balanced binary search tree (e.g., red-black tree).

Ordering of event points:

by x-coordinates

by y-coordinates in case of a tie in x-coordinates.

Supports the following operations on a segment s.

• inserting an event

• fetching the next event

Every event point p is stored with all segments starting at p.

// O(log m)

// O(log m)

m = #event points in the queue

Data Structure for Sweep-line
Status

Describes the relationships among the segments intersected

by the sweep line.

Use a balanced binary search tree T to support the following

operations on a segment s.

Insert(T, s)
Delete(T, s)
Above(T, s) // segment immediately above s
Below(T, s) // segment immediately below s

e.g, Red-black trees, splay trees (key comparisons replaced

by cross-product comparisons).

O(log n) for each operation.

An Example

L

K

M

N

O

K

L O

N M

K

L

N

O

♦The bottom-up order of the segments correspond to the left-to-right

order of the leaves in the tree T.

♦ Each internal node stores the segment from the rightmost leaf in its

left subtree.

Line segment intersection

Input: n line segments

Output: all intersection points

Sweeping…

Let’s trace…

Intersect:

Event: a b c C B d e A D E

aA

Let’s trace…

Intersect:

Event: b c C B d e A D E

aA
Insert ab

Add bB

Key: two segments intersect, they
must be adjacent in the intersection
list at certain moment.

Let’s trace…

Intersect:

Event: b c ab C B d e A D E

bB

aA

Let’s trace …

Intersect:

Event: c ab C B d e A D E

bB

aA

Insert

bc

Insert

ac

Add cC

Let’s trace …

Intersect:

Event: c bc ab ac C B d e A D E

bB

cC

aA

Let’s trace …

Intersect:

Event: bc ab ac C B d e A D E

bB

cC

aA

Count bc

Swap bB-cC

Let’s trace …

Intersect:

Event: bc ab ac C B d e A D E

cC

bB

aA

Let’s trace …

Intersect:

Event: ab ac C B d e A D E

cC

bB

aA

Count ab

Swap aA-bB

Let’s trace …

Intersect:

Event: ac C B d e A D E

cC

aA

bB

Count ac

Swap aA-cC

Let’s trace …

Intersect:

Event: C B d e A D E

aA

cC

bB

Remove cC

Let’s trace …

Intersect:

Event: B d e A D E

aA

bB

Remove bB

Let’s trace …

Intersect:

Event: d e A D E

aA
Add dD

Let’s trace …

Intersect:

Event: e A D E

aA

dD

Add eE

Insert ae

Let’s trace …

Intersect:

Event: e ae A D E

eE

aA

dD

Let’s trace …

Intersect:

Event: ae A D E

eE

aA

dD

Count ae

Swap eE-aA

Insert de

Let’s trace …

Intersect:

Event: ae A de D E

aA

eE

dD

Let’s trace …

Intersect:

Event: A de D E

aA

eE

dD

Remove aA

Let’s trace …

Intersect:

Event: de D E

eE

dD

Count de

Swap dD-eE

Let’s trace …

Intersect:

Event: D E

dD

eE

Remove dD

Let’s trace …

Intersect:

Event: E

eE

Remove eE

The Algorithm

FindIntersections(S)

Input: a set S of line segments

Ouput: all intersection points and for each intersection the

segment containing it.

1. Q ←∅ // initialize an empty event queue

2. Insert the segment endpoints into Q // store with every left endpoint

// the corresponding segments

3. T ←∅ // initialize an empty status structure

4. while Q ≠ ∅

5. do extract the next event point p

6. Q ← Q – {p}

7. HandleEventPoint(p)

Handling Event Points

Status updates (1) – (3) presented earlier.

Degeneracy: several segments are involved in one event point (tricky).

A

B

C

C

A

D

G

E

H

l

D

D

AG E

HC

A

C

G

ET:

G C

HA

B

A

G

C

B

(a) Delete D, E, A, C

(b) Insert B, A, C

p

