
Geometry Introduction



Topic

• Introduction

• Two lines Intersection Test

• Point inside polygon

• Convex hull

• Line Segments Intersection Algorithm



Geometry

Components

• Scalar (S)

• Point (P)

• Free vector (V)

Allowed 
operations

• S * V    � V

• V + V   � V

• P – P    � V

• P + V   � P



Examples

Vector addition

u
v

u+v

Point subtraction

p

q

Point-vector addition

p-q

p

v

p+v



p

q

จุดใดๆบนเสน้ตรงที�ลากผา่นจุด p และ q สามารถสร้างไดจ้าก
affine combination:

( )α= + ⋅ −r p q p

α = 0.5

α = 1.25



Euclidean Geometry

• In affine geometry, angle and distance are not defined.

• Euclidean geometry is an extension providing an additional 
operation called “inner product” 

• There are other types of geometry that extends affine geometry 
such as projective geometry, hyperbolic geometry…



Dot product is a mapping from two vectors to a real number.

Dot product





















=





















=

dd
v

v

v

u

u

u

MM

2

1

2

1

, vu ∑
=

=⋅

d

1i

vu
ii
vu

Length 

uuu ⋅=

Distance 

QPQP −=),dist(

Angle













 ⋅
=

−

vu

vu
vu 1cos),ang(

Orthogonality: u and v are orthogonal when 0vu =⋅



Topic

• Introduction

• Two lines Intersection Test

• Point inside polygon

• Convex hull

• Line Segments Intersection Algorithm



Cross-Product-Based 
Geometric Primitives

source: 91.503 textbook Cormen et al.
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Some fundamental geometric questions:



Cross-Product-Based 
Geometric Primitives: (1)

source: 91.503 textbook Cormen et al.Advantage: less sensitive to accumulated round-off error
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Cross-Product-Based 
Geometric Primitives: (2)

source: 91.503 textbook Cormen et al.
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p1

(2)
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isLeft()

// isLeft(): tests if a point is Left|On|Right of an infinite line.
// Input: three points P0, P1, and P2
// Return: >0 for P2 left of the line through P0 and P1
// =0 for P2 on the line
// <0 for P2 right of the line
int isLeft( Point P0, Point P1, Point P2 )
{

return ( (P1.x - P0.x) * (P2.y - P0.y)
- (P2.x - P0.x) * (P1.y - P0.y) );

}



Segment-Segment Intersection

• Finding the actual intersection point
• Approach: parametric vs. slope/intercept

– parametric generalizes to more complex intersections
• e.g. segment/triangle

• Parameterize each segment

Intersection: values of s, t such that p(s) =q(t) : a+sA=c+tC

a

b

c

d

LabLcd

a

b

c

d

LabLcd

A=b-a

p(s)=a+sA

q(t)=c+tC

C=d-c

source: O’Rourke, Computational Geometry in C

2 equations in unknowns s, t : 1 for x, 1 for y



Assume that a = (x1,y1)  b = (x2,y2) c = (x3,y3) d = (x4,y4)
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Code

typedef struct point { double x; double y;} point;
typedef struct line { point p1; point p2;} line;

int check_lines(line *line1, line *line2, point *hitp)
{

double d   =   (line2->p2.y - line2->p1.y)*(line1->p2.x-line1->p1.x) -
(line2->p2.x - line2->p1.x)*(line1->p2.y-line1->p1.y);

double ns =   (line2->p2.x - line2->p1.x)*(line1->p1.y-line2->p1.y) -
(line2->p2.y - line2->p1.y)*(line1->p1.x-line2->p1.x);

double nt =   (line1->p2.x - line1->p1.x)*(line1->p1.y - line2->p1.y) -
(line1->p2.y - line1->p1.y)*(line1->p1.x - line2->p1.x);

if(d == 0)  return 0;

double s= ns/d;
double t = nt/d;

return (s >=0 && s <= 1 && t >= 0 && t <= 1));
}



Intersection of 2 Line Segments

source: 91.503 textbook Cormen et al.

p2

p1

p3

p4

(3)

Step 1: 

Bounding Box 

Test

Step 2: Does each 

segment straddle the 

line containing the 

other?

33.3

p3 and p4 on opposite sides of p1p2
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Point Inside Polygon Test

• Given a point, determine

if it lies inside a polygon

or not



Ray Test

• Fire ray from point

• Count intersections

– Odd = inside polygon

– Even = outside polygon



Problems With Rays

• Fire ray from point

• Count intersections

– Odd = inside polygon

– Even = outside polygon

• Problems

– Ray through vertex
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Problems With Rays

• Fire ray from point

• Count intersections

– Odd = inside polygon

– Even = outside polygon

• Problems

– Ray through vertex

– Ray parallel to edge



Solution

• Edge Crossing Rule

– an upward edge includes its starting endpoint, and excludes its 
final endpoint; 

– a downward edge excludes its starting endpoint, and includes its 
final endpoint; 

– horizontal edges are excluded; and 

– the edge-ray intersection point must be strictly right of the point 
P. 

• Use horizontal ray for simplicity in computation



Code
// cn_PnPoly(): crossing number test for a point in a polygon
// Input: P = a point,
// V[] = vertex points of a polygon V[n+1] with V[n]=V[0]
// Return: 0 = outside, 1 = inside
// This code is patterned after [Franklin, 2000]
int cn_PnPoly( Point P, Point* V, int n )
{

int cn = 0; // the crossing number counter

// loop through all edges of the polygon
for (int i=0; i<n; i++) { // edge from V[i] to V[i+1]

if (((V[i].y <= P.y) && (V[i+1].y > P.y)) // an upward crossing
|| ((V[i].y > P.y) && (V[i+1].y <= P.y))) { // a downward crossing

// compute the actual edge-ray intersect x-coordinate
float vt = (float)(P.y - V[i].y) / (V[i+1].y - V[i].y);
if (P.x < V[i].x + vt * (V[i+1].x - V[i].x)) // P.x < intersect

++cn; // a valid crossing of y=P.y right of P.x
}

}
return (cn&1); // 0 if even (out), and 1 if odd (in)

}



A Better Way



A Better Way



A Better Way



A Better Way



A Better Way



A Better Way



A Better Way



A Better Way



A Better Way



A Better Way



A Better Way



A Better Way

• One winding = inside



A Better Way
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A Better Way



A Better Way

• zero winding = outside



Requirements

• Oriented edges

• Edges can be processed

in any order



Advantages

• Extends to 3D!

• Numerically stable 

• Even works on models with holes:

– Odd k: inside

– Even k: outside

• No ray casting



Actual Implementation



Winding Number

Int wn_PnPoly( Point P, Point* V, int n )
{

int wn = 0; // the winding number counter

// loop through all edges of the polygon
for (int i=0; i<n; i++) { // edge from V[i] to V[i+1]

if (V[i].y <= P.y) { // start y <= P.y
if (V[i+1].y > P.y) // an upward crossing

if (isLeft( V[i], V[i+1], P) > 0) // P left of edge
++wn; // have a valid up intersect

}
else { // start y > P.y (no test needed)

if (V[i+1].y <= P.y) // a downward crossing
if (isLeft( V[i], V[i+1], P) < 0) // P right of edge

--wn; // have a valid down intersect
}

}
return wn;

}
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Convex Hulls

Subset of S of the plane is convex, if for all pairs p,q in S the 
line segment pq is completely contained in S. 

The Convex Hull CH(S) is the smallest convex set, which 
contains S.

p

q

pq

p

q

pq



Convex hull of a set of points in 
the plane

Rubber band experiment

The convex hull of a set P of points is the unique convex 
polygon whose vertices are points of P and which contains
all points from P.

•

•

•

•

•
•

•

•

•



Convexity & Convex Hulls

• A convex combination of points  

x1, ..., xk is a sum of the form 

α1x1+...+ αkxk where 

• Convex hull of a set of points is 

the set of all convex 

combinations of points in the 

set.

nonconvex polygon

convex hull of a point set

10 1 =++∀≥ ki andi ααα L

source: O’Rourke, Computational Geometry in C

source: 91.503 textbook Cormen et al.



Convex Hull

• Input:

– Set S = {s1, …, sn} of n points

• Output:

– Find its convex hull

• Many algorithms:

– Naïve – O(n3)

– Insertion – O(n logn)

– Divide and Conquer – O(n logn)

– Gift Wrapping – O(nh), h = no of points on the hull

– Graham Scan – O(n logn)



Naive Algorithms 
for Extreme Points

Algorithm: INTERIOR POINTS

for each i do

for each j = i do
for each k = j = i do

for each L = k = j = i do 
if pL in triangle(pi, pj, pk)

then pL is nonextreme O(n4)

Algorithm: EXTREME EDGES

for each i do

for each j = i do
for each k = j = i do

if pk is not left or on (pi, pj)
then (pi , pj) is not extreme O(n3)

source: O’Rourke, Computational Geometry in C



Algorithms: 2D Gift Wrapping

• Use one extreme edge as an anchor for 
finding the next

θ

O(n2)

Algorithm: GIFT WRAPPING

i0 index of the lowest point

i i0
repeat

for each j = i
Compute counterclockwise angle θ from previous hull edge

k       index of point with smallest θ
Output (pi , pk) as a hull edge
i k

until i =  i0 source: O’Rourke, Computational Geometry in C



Gift Wrapping
source: 91.503 textbook Cormen et al.

33.9

Output Sensitivity: O(n2) run-time is actually O(nh) 
where h is the number of vertices of the convex hull.



Algorithms: 3D Gift Wrapping 

CxHull Animations: http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

O(n2) time 

[output sensitive: O(nF) for F faces on hull]



Algorithms: 2D QuickHull

• Concentrate on points close 
to hull boundary

• Named for similarity to 
Quicksort 

a

b

O(n2)

Algorithm: QUICK HULL

function QuickHull(a,b,S)

if S = 0 return()
else

c       index of point with max distance from ab
A      points strictly right of (a,c)
B      points strictly right of (c,b)
return QuickHull(a,c,A) + (c) + QuickHull(c,b,B)

source: O’Rourke, Computational Geometry in C

finds one of upper or lower hull

c

A



Algorithms: 3D QuickHull

CxHull Animations: http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html



Algorithms: >= 2D 

Qhull: http://www.qhull.org/

Convex Hull 

boundary is 

intersection of 

hyperplanes, so 

worst-case 

combinatorial size 
(not necessarily running 

time) complexity is 

in:  )(
2/d

nΘ



Graham’s Algorithm

• Points sorted angularly provide 
“star-shaped” starting point

• Prevent “dents” as you go via 
convexity testing θ

source: O’Rourke, Computational Geometry in C

p0



Graham Scan

• Polar sort the points around a 

point inside the hull

• Scan points in counter-

clockwise (CCW) order

– Discard any point that causes a 
clockwise (CW) turn

• If CCW, advance

• If !CCW, discard current point 
and back up



Graham Scan

source: 91.503 textbook Cormen et al.



Graham-Scan : (1/11)
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Graham-Scan :(1/11)
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1.Calculate polar angle

2.Sorted by polar angle



Graham-Scan : (2/11)
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Graham-Scan : (3/11)
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Graham-Scan : (4/11)
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Graham-Scan  (5/11)
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Graham-Scan  (6/11)
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Graham-Scan  (7/11)
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Graham-Scan  (8/11)
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Graham-Scan  (9/11)
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Graham-Scan  (10/11)
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Time complexity Analysis

• Graham-Scan
– Sorting in step 2 needs O(n log n).

– Time complexity of stack operation is  O(2n)

– The overall time complexity in Graham-Scan is O(n log n).

• Demo:

– http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html



Graham Scan

source: 91.503 textbook Cormen et al.



Graham Scan

source: 91.503 textbook Cormen et al.



Algorithms: 2D Incremental

• Add points, one at a time
– update hull for each new point

• Key step becomes adding a 
single point to an existing hull.
– Find 2 tangents

• Results of 2 consecutive LEFT tests 
differ

• Idea can be extended to 3D.

O(n2)

Algorithm: INCREMENTAL ALGORITHM

Let H2 ConvexHull{p0  , p1 , p2 }

for k       3 to n - 1 do
Hk ConvexHull{ Hk-1 U pk }

can be improved to O(nlgn)

source: O’Rourke, Computational Geometry in C



Algorithms: 3D Incremental 

CxHull Animations: http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

O(n2) time 



Algorithms:
2D Divide-and-Conquer

• Divide-and-Conquer in a geometric setting

• O(n) merge step is the challenge
– Find upper and lower tangents

– Lower tangent: find rightmost pt of A & 
leftmost pt of B; then “walk it downwards”

• Idea can be extended to 3D.

Algorithm: DIVIDE-and-CONQUER

Sort points by x coordinate

Divide points into 2 sets A and B:

A contains left  n/2  points

B contains right  n/2  points

Compute ConvexHull(A) and ConvexHull(B) recursively

Merge ConvexHull(A) and ConvexHull(B) O(nlgn)

A
B

source: O’Rourke, Computational Geometry in C



Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.
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Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.



Convex Hull – Divide & Conquer
• Split set into two, compute convex hull of both, combine.



Convex Hull – Divide & Conquer
• Merging two convex hulls.



Convex Hull – Divide & Conquer
• Merging two convex hulls: (i) Find the lower tangent.
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Convex Hull – Divide & Conquer
• Merging two convex hulls: (ii) Find the upper tangent.



Convex Hull – Divide & Conquer
• Merging two convex hulls: (ii) Find the upper tangent.



Convex Hull – Divide & Conquer
• Merging two convex hulls: (iii) Eliminate non-hull edges.



Algorithms:
3D Divide and Conquer 

CxHull Animations: http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

O(n log n) time ! 
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• Line Segments Intersection Algorithm



Line segment intersection

• Input:

– Set S = {s1, …, sn} of n line segments, si = (xi, yi)

• Output:

– k = All intersection points among the segments in S



Line segment intersection

• Worst case:

– k = n(n –1)/2 = O(n2) intersections

• Sweep line algorithm (near optimal algorithm):

– O(n log n + k) time and O(n) space

– O(n) space



Sweep Line Algorithm

Avoid testing pairs of segments that are far apart. 

Idea: imagine a vertical sweep line passes through the given

set of line segments, from left to right.   

Sweep
line



Assumption on Non-degeneracy

No segment is vertical.  // the sweep line always hits a segment at
// a point. 

If  a segment is vertical, imagine we rotate it clockwise by a tiny angle.

This means:

For each vertical segment, we will consider its lower 
endpoint before upper point.



Sweep Line Status

The set of segments intersecting the sweep line. 

It changes as the sweep line moves, but not continuously.  

Updates of status happen only at event points. 
left endpoints

right endpoints

intersections

event points

A
G

C

T



Ordering  Segments

A total order over the segments that intersect the current 

position of the sweep line:
• Based on which parts of the segments we are

currently interested in

A

B

C

D

E

B > C > D

(A and E not in

the ordering)

C > D

(B drops out of

the ordering)

At an event point, the sequence of segments changes: 

♦ Update the status.

♦ Detect the intersections.

D > C

(C and D swap

their positions)



Status Update (1)

♦A new segment L intersecting 

the sweep line

L

M

K

♦ Check if L intersects with the 

segment above (K) and the 

segment below (M). 

new event

point

♦ Intersection(s) are new event 

points.

Event point is the left endpoint of a segment.

N

K, M, N K, L, M, N

O



Status Update (2)

♦ The two intersecting segments 

(L and M) change order.

L

M

K

♦ Check intersection with new

neighbors (M with O and L with N).  

♦ Intersection(s) are new event points.

Event point is an intersection.

N

O

O, L, M, N O, M, L, N



Status Update (3)

♦ The two neighbors (O and L) 

become adjacent.

L

M

K

♦ Check if they (O and L)  intersect.

♦ Intersection is new event point.

Event point is a lower endpoint of a segment.

N

O, M, L, N O, L, N

O



Data Structure for Event Queue

Data structure: balanced binary search tree (e.g., red-black tree). 

Ordering of event points: 

by x-coordinates

by y-coordinates in case of a tie in x-coordinates.

Supports the following operations on a segment s. 

• inserting an event

• fetching the next event 

Every event point p is stored with all segments starting at p.

// O(log m)

// O(log m)

m = #event points in the queue



Data Structure for Sweep-line 
Status

Describes the relationships among the segments intersected 

by the sweep line. 

Use a balanced binary search tree T to support the following 

operations on a segment s. 

Insert(T, s)
Delete(T, s)
Above(T, s) // segment immediately above s
Below(T, s) // segment immediately below s

e.g, Red-black trees, splay trees (key comparisons replaced 

by cross-product comparisons).

O(log n) for each operation.



An Example

L

K

M

N

O

K

L O

N M

K

L

N

O

♦The bottom-up order of the segments correspond to the left-to-right

order of the leaves in the tree T. 

♦ Each internal node stores the segment from the rightmost leaf in its 

left subtree. 



Line segment intersection

Input: n line segments

Output: all intersection points



Sweeping…



Let’s trace…

Intersect:

Event: a b c C B d e A D E

aA



Let’s trace…

Intersect:

Event: b c C B d e A D E

aA
Insert ab

Add bB



Key: two segments intersect, they 
must be adjacent in the intersection 
list at certain moment.



Let’s trace…

Intersect:

Event: b c ab C B d e A D E

bB

aA



Let’s trace …

Intersect:

Event: c ab C B d e A D E

bB

aA

Insert 

bc

Insert 

ac

Add cC



Let’s trace …

Intersect:

Event: c bc ab ac C B d e A D E

bB

cC

aA



Let’s trace …

Intersect:

Event: bc ab ac C B d e A D E

bB

cC

aA

Count bc

Swap bB-cC



Let’s trace …

Intersect:

Event: bc ab ac C B d e A D E

cC

bB

aA



Let’s trace …

Intersect:

Event: ab ac C B d e A D E

cC

bB

aA

Count ab

Swap aA-bB



Let’s trace …

Intersect:

Event: ac C B d e A D E

cC

aA

bB

Count ac

Swap aA-cC



Let’s trace …

Intersect:

Event: C B d e A D E

aA

cC

bB

Remove cC



Let’s trace …

Intersect:

Event: B d e A D E

aA

bB

Remove bB



Let’s trace …

Intersect:

Event: d e A D E

aA
Add dD



Let’s trace …

Intersect:

Event: e A D E

aA

dD

Add eE

Insert ae



Let’s trace …

Intersect:

Event: e ae A D E

eE

aA

dD



Let’s trace …

Intersect:

Event: ae A D E

eE

aA

dD

Count ae

Swap eE-aA

Insert de



Let’s trace …

Intersect:

Event: ae A de D E

aA

eE

dD



Let’s trace …

Intersect:

Event: A de D E

aA

eE

dD

Remove aA



Let’s trace …

Intersect:

Event: de D E

eE

dD

Count de

Swap dD-eE



Let’s trace …

Intersect:

Event: D E

dD

eE

Remove dD



Let’s trace …

Intersect:

Event: E

eE

Remove eE



The Algorithm

FindIntersections(S)

Input: a set S of line segments

Ouput: all intersection points and for each intersection the 

segment containing it.

1.    Q ←∅ // initialize an empty event queue

2.    Insert the segment endpoints into Q // store with every left endpoint

//  the corresponding segments

3.    T ←∅ // initialize an empty status structure

4. while Q ≠ ∅

5. do extract the next event point p

6.                Q ← Q – {p}

7.                HandleEventPoint(p)



Handling Event Points

Status updates (1) – (3) presented earlier. 

Degeneracy: several segments are involved in one event point (tricky).

A

B

C

C

A

D

G

E

H

l

D

D

AG E

HC

A

C

G

ET:

G C

HA

B

A

G

C

B

(a) Delete D, E, A, C

(b) Insert B, A, C

p


